
Improving Bayesian Neural Networks by Adversarial Sampling

Jiaru Zhang1, Yang Hua2, Tao Song1, Hao Wang3, Zhengui Xue1, Ruhui Ma1, Haibing Guan1

1Shanghai Jiao Tong University 2Queen’s University Belfast 3Louisiana State University
{jiaruzhang,songt333, zhenguixue, ruhuima, hbguan}@sjtu.edu.cn,

Y.Hua@qub.ac.uk, haowang@lsu.edu

Abstract

Bayesian neural networks (BNNs) have drawn extensive in-
terest due to the unique probabilistic representation frame-
work. However, Bayesian neural networks have limited pub-
licized deployments because of the relatively poor model per-
formance in real-world applications. In this paper, we argue
that the randomness of sampling in Bayesian neural networks
causes errors in the updating of model parameters during
training and poor performance of some sampled models in
testing. To solve this, we propose to train Bayesian neural net-
works with Adversarial Distribution as a theoretical solution.
To avoid the difficulty of calculating Adversarial Distribu-
tion analytically, we further present the Adversarial Sampling
method as an approximation in practice. We conduct exten-
sive experiments with multiple network structures on differ-
ent datasets, e.g., CIFAR-10 and CIFAR-100. Experimental
results validate the correctness of the theoretical analysis and
the effectiveness of the Adversarial Sampling on improving
model performance. Additionally, models trained with Ad-
versarial Sampling still keep their ability to model uncertain-
ties and perform better when predictions are retained accord-
ing to the uncertainties, which further verifies the generality
of the Adversarial Sampling approach.

1 Introduction
Bayesian neural networks (Neal 2012; Gal 2016) provide a
probabilistic view of deep learning frameworks. Variational
Inference (VI) (Blundell et al. 2015; Blei, Kucukelbir, and
McAuliffe 2017) is an effective method to train the Bayesian
neural networks, especially in large-scale practical tasks.
One of the primary advantages of Bayesian neural networks
is that they can model both aleatoric and epistemic uncer-
tainty due to the unique probabilistic representation of the
network parameters. It has shown considerable potential and
has been widely used in a variety of tasks, e.g., computer vi-
sion (Kendall and Gal 2017; Phan 2019; Gustafsson, Danell-
jan, and Schön 2020), natural language processing (Xiao and
Wang 2019), active learning (Hernández-Lobato and Adams
2015), and reinforcement learning (Depeweg et al. 2017).

Bayesian neural networks have indeed few publicized de-
ployments in industrial practice despite the theoretical ad-
vancements (Wenzel et al. 2020). Researchers have pro-
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posed multiple explanations and solutions for this phe-
nomenon. Wenzel et al. revealed that the temperature of
parameters and the prior selection have a clear influence
on model generalization performance (Wenzel et al. 2020).
However, they did not provide a clear method to improve the
model performance. Initializing Bayesian neural networks
with the parameters from pretrained deterministic neural
networks has also been proposed to improve the perfor-
mance (Krishnan, Subedar, and Tickoo 2020; Deng et al.
2020). Although their methods are effective in practice, it
is still unknown that why Bayesian neural networks can-
not learn a suitable representation and perform well on their
own.

To address it in this paper, we first present an explana-
tion for the phenomenon by examining the training and in-
ference processes of Bayesian neural networks. We discover
that there are some errors in the updating of model param-
eters during training and some sampled models with poor
performance in testing because of the randomness of sam-
pling. Further, we propose to train Bayesian neural networks
with Adversarial Distribution based on the discovery, where
the parameters are updated according to the likely sampled
model with the worst performance. As the accurate calcula-
tion of the Adversarial Distribution is usually difficult, we
propose the Adversarial Sampling method as an approxima-
tion and it is simple to implement in practice. We carry out
experiments to validate our motivation and the effectiveness
of the proposed Adversarial Sampling method on different
datasets.

In summary, the main contributions are listed as follows:

• We argue that the randomness of sampling in Bayesian
neural networks causes errors in updating parameters
during training and models with poor performance dur-
ing testing.

• We propose to train Bayesian neural networks with Ad-
versarial Distribution. According to our theoretical anal-
ysis, it can improve the worst performance of the model
in multiple samplings and enhance its predictive perfor-
mance.

• To use the adversarial distribution training in practice, we
further propose the Adversarial Sampling method as an
approximation. It can be implemented easily in current
Bayesian neural network frameworks.



• Experiments on multiple network structures and datasets
verify our theoretical analysis and the effectiveness of the
Adversarial Sampling method. We release our codes at
https://github.com/AISIGSJTU/AS.

2 Related Work
2.1 Bayesian neural networks
Unlike deterministic deep neural networks where a point es-
timate of model parameters is obtained by optimizing a spe-
cific objective function, Bayesian neural networks (Buntine
1991; Neal 2012; Blundell et al. 2015) are trained to find the
posterior distribution of the parameters instead of a point es-
timate. Variational Inference (Graves 2011; Foti et al. 2014;
Blundell et al. 2015; Blei, Kucukelbir, and McAuliffe 2017)
and Markov Chain Monte Carlo (Chen, Fox, and Guestrin
2014; Bardenet, Doucet, and Holmes 2017) are two main-
stream methods to train Bayesian neural networks. Although
Variational Inference scales better than the Markov Chain
Monte Carlo approach and is gaining in popularity, most of
the extant works fail to meet the aim of practicability and
there are few publicized deployments in industrial practice.

Researchers have offered several explanations and reme-
dies to the problem. Wenzel et al. demonstrate that cool-
ing the posterior with a temperature T improves generaliza-
tion performance considerably (Wenzel et al. 2020). How-
ever, the posterior probability becomes more concentrated
on the set of point estimates with a cooler temperature T ,
i.e., degenerating into a deterministic neural network. From
another point of view, Krishnan et al. suggest using the pa-
rameters from a pretrained deterministic neural network to
establish the prior and initialize the model parameters (Kr-
ishnan, Subedar, and Tickoo 2020). Similarly, Deng et al.
propose BayesAdapter as a tool for converting pretrained
deterministic neural networks into Bayesian neural networks
(Deng et al. 2020). Both methods are successful in increas-
ing model performance, but they do not explain why the
initialization from deterministic neural networks is essential
and there is still a large gap for further improvement.

2.2 Adversarial Perturbation
Adversarial perturbation on data, i.e., Adversarial Examples,
has been studied in detail (Goodfellow, Shlens, and Szegedy
2015; Sun, Tan, and Zhou 2018). A small but intentionally
Adversarial Perturbation on input data can result in a sig-
nificant shift in model output. Researchers have proposed
many kinds of methods of Adversarial Perturbation on data,
e.g., FGSM (Goodfellow, Shlens, and Szegedy 2015), BIM
(Kurakin, Goodfellow, and Bengio 2017), CW (Carlini and
Wagner 2017), PGD (Madry et al. 2018), and AutoAttack
(Croce and Hein 2020). Moreover, using Adversarial Ex-
amples as training data, i.e., Adversarial Training (Good-
fellow, Shlens, and Szegedy 2015), has also been used as
an effective method to enhance the adversarial robustness of
models. A worth mentioning method is Adversarial Distri-
bution Training (Dong et al. 2020), which also formulates
the adversarial perturbation as a probabilistic distribution.
Our method differs from the Adversarial Distribution Train-
ing because we target improving the generalization perfor-

mance of Bayesian neural networks, while theirs is used on
improving the adversarial robustness of deterministic neural
networks.

There are also several studies about the adversarial pertur-
bation on model parameters. It has been shown that adver-
sarial perturbation on weights improves the adversarial ro-
bustness of models by combining with the adversarial train-
ing (Wu, Xia, and Wang 2020). Furthermore, Zheng et al.
demonstrate that the adversarial perturbation on model pa-
rameters alone serves as a regularization approach by en-
forcing the model finding flat local minima of the empirical
risk, and enhances the model generalization (Zheng, Zhang,
and Mao 2021). To some extent, our Adversarial Sampling
approach can be viewed as a natural extension of these ex-
isting approaches on Bayesian neural networks.

3 Background
3.1 Bayesian Neural Networks with Variational

Inference
Suppose we have observations D = {(x1,y1), (x2,y2),
. . . }, a Bayesian neural network parameterized by W uses a
variational distribution Qθ(W) to approximate the real pos-
terior probability P (W|D). The Bayesian neural network
is trained by minimizing the Kullback–Leibler (KL) diver-
gence

KL(Qθ(W)||P (W|D))) = −
∫

Qθ(W) log
P (W|D)

Qθ(W)
dW

= logP (D)−
∫

Qθ(W) log
P (W,D)

Qθ(W)
dW.

(1)

Since logP (D) is a constant for given observations D,
minimizing the KL divergence is equivalent to minimizing

L = −
∫

Qθ(W) log
P (W,D)

Qθ(W)
dW

= −EW∼Qθ(W) logP (D|W)︸ ︷︷ ︸
Lp

+KL(P (W)||Qθ(W))︸ ︷︷ ︸
Lr

.

(2)

Note that −L is a lower bound of logP (D), thus L is usu-
ally called the Evidence Lower Bound (ELBO) loss (Blei,
Kucukelbir, and McAuliffe 2017). It can be divided into two
terms. The first term is directly related to the predictions and
it is named as the prediction loss Lp. The second term can
be seen as a regularization on the model parameters, and it
is named as the regularization loss Lr.

The target of the training process is to find the parameters
θ of the variational distribution Qθ(W) to minimize L:

θ = argmin
θ

L. (3)

The prediction y of given input x is obtained by multiple
stochastic forward passes through sampling K times from
the probability distribution:

p (y|x,D) ≈ 1

K

K∑
k=1

p (y|x,Wk) ,Wk ∼ Qθ(W). (4)



It is also called the Bayes ensemble, as it can be seen as an
ensemble of multiple likely models (Deng et al. 2020).

3.2 Uncertainty Estimation
One of the important properties of Bayesian neural networks
is the ability to estimate uncertainty, which has been used
in various domains to enhance model performance, such as
scene segmentation (Kendall and Gal 2017) and sentiment
analysis (Xiao and Wang 2019). On the other hand, uncer-
tainty estimation can also be used to detect anomalous sam-
ples or out-of-distribution samples (Smith and Gal 2018;
Antorán 2019). For a classification model with parameters
W, input x and output y in classes C = {c1, c2, . . . , cm},
following previous approaches as follows (Antorán 2019;
Depeweg 2019; Zhang et al. 2021), the total uncertainty of
the prediction can be modeled by its predictive entropy

H(y|x,W) =

m∑
i=1

p(y = ci|x,W) log p(y = ci|x,W).

(5)

It contains both aleatoric uncertainty Ha and epistemic un-
certainty He. The aleatoric uncertainty Ha is

Ha(y|x,W) = EWH(y|x,W) ≈ 1

K

K∑
k=1

H(y|x,Wk).

(6)

Hence it can be estimated by K Monte Carlo samplings. The
epistemic uncertainty He is given by the difference between
the overall uncertainty H and the aleatoric uncertainty Ha,
i.e.,

He(y|x,W) = H(y|x,W)− EWH(y|x,W). (7)

4 Adversarial Sampling
4.1 Explanation of the Poor Performance
As demonstrated in Equations (3) and (4), Monte Carlo sam-
pling is usually used to sample from the Bayesian posterior
throughout the training process, and the original parameters
are subsequently updated based on the gradients and losses
from the sampled models. Because the models utilized in
training are randomly sampled from the Bayesian neural net-
works, there are some errors in the updating of model param-
eters. Figure 1 presents the error rates of Bayesian neural
networks and deterministic neural networks with different
random seeds during training. The curves of Bayesian neu-
ral networks fluctuate more sharply, which verifies that there
are some errors in updating the parameters of Bayesian neu-
ral networks because of the randomness.

Similarly, the final predictions are derived from an ensem-
ble of the forward passing of multiple random likely mod-
els during testing. Therefore, some models with poor perfor-
mance are yielded from the random sampling process. Fig-
ure 2 shows the distribution of accuracies of sampled models
from a Bayesian neural network. Some models have much
lower accuracies compared with others, which confirms our
analysis that there exist some models with poor performance
in the random sampling process.
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Figure 1: Error rates of Bayesian neural networks and deter-
ministic neural networks with different random seeds during
a 200-epoch training. The ResNet20 structure and dataset
CIFAR-10 are used. Best viewed in color.
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Figure 2: Accuracies of 100 sampled models from a
Bayesian neural network. The ResNet56 structure and
dataset CIFAR-100 are used. Best viewed in color.

4.2 Training with Adversarial Distribution

Based on our explanation of the poor performance, we pro-
pose to train Bayesian neural networks with Adversarial
Distribution Qadv(W) instead of using original distribution
Qθ(W). Concretely, given a dataset D and the parameter
distributions of a Bayesian neural network Qθ(W), the cor-
responding Adversarial Distribution Qadv(W) is defined as
follows:

Qadv = argmax
W [Qadv,Qθ]≤d

− EW∼Qadv(W) logP (D|W), (8)

where d is a hyperparameter to control W [Qadv, Qθ].
W [Qadv, Qθ] denotes the Wasserstein distance between
Qadv and Qθ, which is a widely used metric between prob-
abilistic distributions in deep learning (Frogner et al. 2015;
Arjovsky, Chintala, and Bottou 2017; Cheng et al. 2020). It



Algorithm 1: Training with Adversarial Sampling
Input: Variational posterior parameters (µ, σ), Batch data
D
Parameters: Iterations N , Step length for perturbation α
Output: Updated variational posterior parameters (µ, σ)

1: Sample ϵadv ∼ N (0, 1)
2: for sufficient iterations N do
3: Let wadv = µ+ ϵadv · σ
4: Calculate the adversarial loss Ladv with parameter

wadv and data D
5: Update ϵadv = ϵadv + α · sign( ∂Lp

∂ϵadv
)

6: end for
7: Let wadv = µ+ ϵadv · σ
8: Calculate the adversarial loss Ladv with parameter wadv

and data D
9: Sample ϵ ∼ N (0, I)

10: Let w = µ+ ϵ · σ
11: Calculate the prediction loss Lp with parameter w and

data D
12: Calculate the regularization loss Lr analytically
13: Calculate the total loss L with Equation (11)
14: Update parameter µ and σ with the total loss L

is defined as

W [Qadv, Qθ] = inf
γ∈Π(Qadv,Qθ)

E(x,y)∼γ [d(x, y)], (9)

where Π(Qadv, Qθ) denotes the set of all joint distributions
γ(x, y) whose marginal distributions are Qadv and Qθ, and
d(x, y) represents the distance between the two points x and
y. In this paper, we use the l∞ metric as the distance metric
d(x, y).

Corresponding to the Adversarial Distribution, the adver-
sarial loss Ladv is defined as

Ladv = −EW∼Qadv(W) logP (D|W). (10)

The total learning target is formulated as

θ = argmin
θ

((1− λ) · Lp + λ · Ladv + Lr) , (11)

where λ is a hyperparameter to control the ratio of train-
ing with Adversarial Distribution. It will degenerate to the
original target in Equation (3) when d = 0 or λ = 0. In-
tuitively, sampling from the Adversarial Distribution yields
likely models with the worst performance in the Bayesian
neural network. Therefore, we update the parameters ac-
cording to the worst model to guarantee the performance
of the regularly sampled models during prediction. In this
way, it can also effectively reduce the performance disparity
between the likely models.

4.3 Adversarial Sampling as an Approximation
Calculating the Adversarial Distribution Qadv in Equation
(8) analytically for Bayesian neural networks is usually dif-
ficult. Therefore, we propose the Adversarial Sampling tech-
nique as a practical approximation. To be more specific, we

sample each parameter from the original parameter distribu-
tion Qθ, which is a Gaussian distribution with a mean of µ
and a variance of σ2:

wadv ∼ N (µ, σ2). (12)

The parameter w is then adversarially perturbed using an it-
erative approach. The step below is repeated multiple times:

wadv = w + α · σ · sign(grad(wadv)), (13)

where grad(wadv) represents the gradient of parameter w
of the corresponding loss function. The hyperparameter α is
the step size of the adversarial perturbation. We adjust the
scope of the adversarial perturbation using the standard de-
viation of the parameter σ, since a parameter with a larger
standard deviation has higher randomness in regular sam-
pling.

Denoting the iteration times as N , the total distance be-
tween w and wadv satisfies ∥w−wadv∥ ≤ N ·α. Therefore,
it satisfies W [Qadv, Qθ] ≤ d by setting d = N · α. Besides,
as wadv is generated by multiple iterations of increasing the
prediction loss, it can be seen as a reasonable approximation
of the argmax operation. Therefore, the process of generat-
ing the parameter wadv can be regarded as a sampling from
a distribution, and many wadvs create an approximation of
the Adversarial Distribution.

In practice, the parameter w is yielded by a random unit
Gaussian noise ϵ ∼ N (0, 1): w = µ + ϵ · σ with the pop-
ularly used reparameterization trick (Blundell et al. 2015;
Kingma, Salimans, and Welling 2015; Kingma and Welling
2014). Therefore, we just need to update the random noise ϵ
with the same step size α instead of considering the standard
deviation σ, making Adversarial Sampling simple to imple-
ment. The procedure to train Bayesian neural networks with
Adversarial Sampling is provided in Algorithm 1.

5 Experiments
In this section, we empirically verify our motivation and in-
vestigate the effectiveness of the proposed Adversarial Sam-
pling method. We train a variety of Bayesian neural net-
works, including ResNet20, ResNet56 (He et al. 2016), and
VGG (Simonyan and Zisserman 2015), on CIFAR-10, and
CIFAR-100 datasets (Krizhevsky 2009). For simplicity, we
set the hyperparameter α = 0.02 and N = 5 on models
trained with Adversarial Sampling.

5.1 Verification of Motivation
We present the experimental results to verify that our analy-
sis on the problem of Bayesian neural networks and our Ad-
versarial Sampling method is effective to solve it. We train
networks with and without Adversarial Sampling of struc-
ture ResNet20 on CIFAR-10 dataset with multiple random
seeds and plot the error rates during the 200-epoch training
in Figure 3. The error rates of models trained with Adversar-
ial Sampling are obviously lower than that of original mod-
els, proving the effectiveness of the Adversarial Sampling
method. The change trends of models trained with Adver-
sarial Sampling are more stable and steady, which verifies
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Figure 3: Error rates of models trained without Adversarial
Sampling (AS) and with Adversarial Sampling with differ-
ent random seeds during a 200-epoch training. Best viewed
in color.

our motivation that training with Adversarial Sampling re-
duces the errors in the updating of model parameters during
training.

We sample 10000 likely models from the models trained
with and without Adversarial Sampling and we record the
test accuracy of them. The Bayesian neural networks of
structure ResNet20 on CIFAR-10 dataset and Bayesian neu-
ral networks of structure ResNet56 on CIFAR-100 dataset
are used. The results are shown in Figure 4. The models
trained without Adversarial Sampling distribute more dis-
persed than the models trained with Adversarial Sampling,
which verifies that the Adversarial Sampling method re-
duces the randomness of Bayesian neural networks. Addi-
tionally, the accuracy of the worst-performing model trained
with Adversarial Sampling is clearly higher than that of the
model trained without Adversarial Sampling.

5.2 Ablation Study
As indicated in Equation (11), the hyperparameter λ regu-
lates the ratio of Adversarial Sampling during training. To
evaluate the impact of different settings of the λ in practice,
we measure the error rates of models trained with different λ
throughout a 200-epoch training. The results are presented in
Figure 5. The model performance is clearly improved when
λ is gradually increased from 0 (i.e., a model trained with-
out Adversarial Sampling) to 0.8. However, there is a signif-
icant drop in performance when λ reaches 1.0 (i.e., training
with completely Adversarial Sampling). Therefore, the com-
pletely Adversarial Sampling harms the model performance
and the introduction of parameter λ in Equation (11) is nec-
essary.

5.3 Improvement on Model Performance
We present the classification accuracies in Table 1 to validate
that the Adversarial Sampling method indeed enhances the
model performance. The Bayesian neural networks of struc-
ture ResNet20, ResNet56, and VGG trained on CIFAR-10
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Figure 4: Comparison between accuracies of 10000 sam-
pled models from Bayesian neural networks trained without
Adversarial Sampling (AS) and with Adversarial Sampling.
Best viewed in color.

and CIFAR-100 datasets are used. We present three kinds
of accuracies for each model: The lowest accuracy and the
highest accuracy among 100 sampled models, and the ac-
curacy of the ensembled model. The models trained with
Adversarial Sampling have much higher lowest accuracies
compared with the original models under all the condi-
tions. It verifies our analysis that particular models with poor
performance exist in normal training and the Adversarial
Sampling method solves the problem. They also have clear
higher highest accuracies and higher ensembled accuracies
on all the network structures and datasets, which proves
that the Adversarial Sampling method indeed improves the
model performance.

5.4 Combination with Bayesian Fine-tune
As we mentioned above, initialization of Bayesian neural
networks with the parameters from a trained determinis-
tic neural network, i.e., Bayesian fine-tune, is an effective
method to improve the performance of Bayesian neural net-



Dataset Model Lowest Accuracy Highest Accuracy Ensembled Accuracy

CIFAR-10

ResNet20 82.73± 0.88 86.03± 0.43 87.01± 0.65
ResNet20 + AS 86.33± 0.45 88.35± 0.51 88.76± 0.73

ResNet56 82.71± 0.55 86.84± 0.04 88.22± 0.41
ResNet56 + AS 87.30± 0.32 88.86± 0.79 89.61± 0.93

VGG 85.04± 0.44 88.47± 0.12 89.80± 0.12
VGG + AS 88.68± 0.53 90.39± 0.35 90.86± 0.32

CIFAR-100

ResNet20 52.54± 1.54 55.58± 1.33 56.56± 1.07
ResNet20 + AS 54.83± 0.95 57.24± 0.89 57.62± 0.91

ResNet56 44.92± 5.58 51.67± 2.99 53.21± 2.40
ResNet56 + AS 54.76± 2.26 57.50± 1.43 58.63± 1.58

VGG 40.61± 1.28 45.38± 0.95 47.60± 1.01
VGG + AS 51.14± 1.23 54.95± 0.53 56.11± 0.66

Table 1: Comparison of models trained with Adversarial Sampling (AS) and models trained without Adversarial Sam-
pling. The lowest accuracy and highest accuracy among 100 sampled models, and the accuracy of the ensembled model are
used as the evaluation metric. The mean value and maximum deviation of three runs are reported.

Dataset Model Lowest Accuracy Highest Accuracy Ensembled Accuracy

CIFAR-10

ResNet20 86.35± 0.62 90.29± 0.28 91.88± 0.06
ResNet20 + AS 88.19± 0.44 91.22± 0.18 91.98± 0.18

ResNet56 85.54± 1.24 90.48± 0.51 92.34± 0.44
ResNet56 + AS 88.74± 0.64 91.78± 0.16 92.75± 0.25

VGG 87.01± 1.04 90.23± 0.20 91.93± 0.26
VGG + AS 90.44± 0.52 91.92± 0.06 92.92± 0.08

CIFAR-100

ResNet20 61.05± 0.61 64.53± 0.50 66.97± 0.72
ResNet20 + AS 63.51± 0.64 65.71± 0.32 66.74± 0.77

ResNet56 60.51± 1.30 64.99± 0.33 68.16± 0.12
ResNet56 + AS 64.93± 0.43 67.37± 0.32 69.48± 0.39

VGG 47.07± 2.35 52.00± 0.68 55.07± 1.05
VGG + AS 61.73± 0.38 64.18± 0.67 66.07± 1.05

Table 2: Comparison of models trained with Adversarial Sampling (AS) and models trained without Adversarial Sam-
pling with Bayesian fine-tune. The lowest accuracy and highest accuracy among 100 sampled models, and the accuracy of the
ensembled model are used as the evaluation metric. The mean value and maximum deviation of three runs are reported.

works (Krishnan, Subedar, and Tickoo 2020; Deng et al.
2020). We implement Bayesian fine-tune as a higher base-
line and test the impact of our Adversarial Sampling method
on models trained with Bayesian fine-tune. The results are
shown in Table 2. Similarly, the three kinds of accuracies are
used as the evaluation metrics. Even though Bayesian fine-
tune has improved the model performance to a large extent,
models trained with the Adversarial Sampling method also
perform obviously better compared with original models,
proving the universality and efficacy of Adversarial Sam-
pling.

5.5 The Ability of Uncertainty Estimation
To further verify that Bayesian neural networks trained with
Adversarial Sampling still keep the ability to model the un-
certainties, we measure both the aleatoric uncertainty and

the epistemic uncertainty on our model with normal input
images and blurred input images. The histograms for uncer-
tainties obtained from models trained with Adversarial Sam-
pling are plotted in Figure 6. It indicates that blurred images
have larger uncertainty estimations on both aleatoric uncer-
tainty and epistemic uncertainty. These findings show that
the uncertainty estimates obtained from the model trained
with the Adversarial Sampling method are useful and can
identify the out-of-distribution data.

The uncertainties estimated by Bayesian neural networks
serve as a measure of how confident the predictions are.
Therefore, the predictions on which the model is least confi-
dent can be withdrawn, i.e., with higher uncertainty. Follow-
ing previous papers (Filos et al. 2019; Krishnan, Subedar,
and Tickoo 2020), we present the ensembled accuracies in
Table 3 where only partial predictions are retained and the



Dataset Model 20 % data retained 40 % data retained 60 % data retained 80 % data retained

CIFAR-10

ResNet20 99.82± 0.08 99.62± 0.14 98.55± 0.22 94.45± 0.30
ResNet20 + AS 99.90± 0.05 99.74± 0.11 99.07± 0.15 96.21± 0.35

ResNet56 99.90± 0.05 99.75± 0.10 98.81± 0.23 95.14± 0.61
ResNet56 + AS 99.95± 0.00 99.81± 0.06 99.21± 0.11 96.84± 0.48

VGG 99.88± 0.03 99.74± 0.09 99.28± 0.17 96.54± 0.10
VGG + AS 99.93± 0.03 99.79± 0.09 99.44± 0.06 97.68± 0.34

CIFAR-100

ResNet20 96.40± 0.50 85.05± 1.45 74.09± 1.41 64.87± 1.26
ResNet20 + AS 96.68± 0.68 87.39± 1.59 76.43± 1.29 66.53± 1.06

ResNet56 93.88± 0.73 80.38± 1.29 69.82± 2.13 61.09± 2.56
ResNet56 + AS 97.18± 0.43 88.09± 1.89 77.20± 1.85 67.35± 1.94

VGG 86.93± 0.28 72.96± 0.36 62.96± 0.76 54.59± 0.82
VGG + AS 96.32± 0.23 85.61± 0.59 74.28± 0.72 64.79± 0.73

Table 3: Comparison of classification accuracy when only partial data are retained according to the uncertainties of the
predictions. The accuracies of the ensembled models from 100 samplings are used. The mean value and maximum deviation
of three runs are reported.
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Figure 5: Error rates of models trained with different hy-
perparameter λ during a 200-epoch training. Best viewed in
color.
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Figure 6: Uncertainties measured by Bayesian neural net-
works trained with Adversarial Sampling. Models trained
with Adversarial Sampling keep the ability to model uncer-
tainties. Best viewed in color.

rest are referred according to the total uncertainty. It can be

seen as a more comprehensive evaluation metric on model
performance and the ability to model uncertainties. The re-
sults show that the accuracy goes higher when fewer predic-
tions are retained on all network structures and all datasets,
which verifies the effectiveness of the estimated uncertain-
ties. Models trained with the Adversarial Sampling have
higher performance compared with models trained without
Adversarial Sampling. Therefore, training with Adversarial
Sampling approach is still helpful and enhances the model
performance under this scenario, which confirms the effec-
tiveness and versatility of the Adversarial Sampling method.

6 Conclusion

In this paper, we argue that the randomness of sampling in
Bayesian neural networks causes the performance decrease.
Then we propose to train Bayesian neural networks with Ad-
versarial Distribution as a theoretical solution. Because the
calculation of Adversarial Distribution is difficult in general,
we further propose Adversarial Sampling as an approxima-
tion in practice. It tries to find the likely models with the
worst performance by several iterative adversarial pertur-
bations on the sampled parameters. Extensive experiments
validate our proposal and show that models trained with Ad-
versarial Sampling outperform models without Adversarial
Sampling significantly. Moreover, models trained with the
Adversarial Sampling method keep the ability to model the
uncertainties, which further expands its application scenar-
ios.
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