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Abstract

Feature fusion based on neural networks has drawn
great attention of researchers in the enhancement
of system performance. Recent studies show the
advantage of the tensor-based feature fusion meth-
ods, e.g., Tensor Fusion Network, over the tradi-
tional early fusion and late fusion approaches given
the superior power in the representation of com-
plex dynamics. However, the computational com-
plexity of the tensor-based feature fusion increases
exponentially due to the tensor products. Some
tensor decomposition methods are applied to solve
the problem in previous work, such as Tucker de-
composition and CP decomposition. In this paper,
we propose a multiple feature fusion method us-
ing tensor Block decomposition. Theoretically, it
is a general form of two previous tensor decom-
position approaches and holds strengths from both
of them. Based on the Block decomposition, we
construct the corresponding Multiple feature Block
Fusion Network (MBFN) practically. Our MBFN
is applicable to both unimodal features and mul-
timodal features and it can fuse multiple features
at the same time. Experimental studies on a uni-
modal dataset (i.e., Reuters) prove the effectiveness
of multiple feature fusion. Experiments on two
multimodal datasets (i.e., MOSI and IEMOCAP)
validate the generality and high-performance of the
proposed MBFN.

1 Introduction
Deep learning research has shown numerous methods to solve
problems in artificial intelligence. The ability for agents to
combine information from multiple sources is valued because
one source cannot provide enough information in many situ-
ations. Therefore, next-generation agents need to handle data
from different domains with different models. Feature fu-
sion methods in deep learning have drawn great attention of
researchers. The application areas of feature fusion include
face recognition [Hu et al., 2017], video classification [Liu et
al., 2018; Zadeh et al., 2017], and object recognition [Zhang
et al., 2018], etc.

(a) Traditional feature fusion methods

(b) Tensor-based feature fusion methods

Figure 1: Comparison between different feature fusion methods

Feature-level fusion methods can be divided into tradi-
tional feature aggregation methods and tensor-based subspace
methods. Figure 1 shows the general view of these two broad
categories. In traditional aggregation feature fusion methods,
including concatenation and weighted averaging, the fused
features are combinations of input features. Limited by the
dimensions of the fused features, they cannot extract enough
inter-information from original features. Tensor-based fea-
ture fusion methods have shown their strengths and advan-
tages in many applications [Lei et al., 2014; Zadeh et al.,
2017]. In these methods, the fused features contain not only
the original features but also the tensor products of them.



Therefore, the fusion models have much richer representation
of features and thus achieve better performance in different
tasks.

Even though the existing tensor-based feature fusion meth-
ods are efficient in many problems, they cannot be used to
fuse a large number of features due to the exponential com-
putational complexity caused by tensor product. Tensor de-
composition is an efficient method to solve the problem. It
expresses a tensor as a sequence of elementary operations act-
ing on other simpler tensors. Tucker decomposition [Tucker,
1966] and CANDECOMP/PARAFAC (CP) Decomposition
[Carroll and Chang, 1970; Harshman, 1970] are two main
tensor decomposition methods. Tucker decomposition de-
composes a tensor into a core tensor multiplied (or trans-
formed) by a matrix along each mode. G. Hu et al. [2017]
used Tucker decomposition in the tensor product model to
fuse two features. CP decomposition factorizes a tensor into
a sum of components of rank-one tensors. The number of the
rank-one tensors is the rank of this decomposition method.
Liu et al. [2018] utilized low-rank CP decomposition in mul-
tiple feature fusion, which leverages low-rank weight tensors
to fuse multimodal features effectively.

Although these two methods reduce the computational
complexity of their tasks, both of the methods have their
own weakness and limitations. The Tucker decomposition
model is limited to fusing two features, while CP decompo-
sition model cannot extract complex information in the orig-
inal features. Additionally, the previous methods only focus
on their specific problems and they lack versatility in feature
fusion. To overcome these limitations, we firstly propose a
multiple feature fusion method using tensor Block decompo-
sition, a generalized tensor decomposition method combin-
ing both Tucker decomposition and CP decomposition [Kolda
and Bader, 2009]. It is the first method to use tensor Block
decomposition in feature fusion. The proposed feature fusion
method holds strengths from both methods using Tucker de-
composition and CP decomposition. To implement the fea-
ture fusion method in practice, we build the corresponding
Multiple feature Block Fusion Network (MBFN), which is
equivalent to the fusion method. This enables us to use the
fusion method for concrete problems easily by building an
end-to-end network. The proposed feature fusion method can
fuse multiple features at the same time and the superiority of
multiple feature fusion over two feature fusion is also veri-
fied. Our main contributions are twofold:

• We propose a novel multiple feature fusion method us-
ing tensor Block decomposition. It is the first method
to use Block decomposition in feature fusion and holds
both strengths from two previous tensor-based feature
fusion methods on theoretical analysis. The multiple
feature fusion architecture is more effective than the fu-
sion of two features.

• We build a Multiple feature Block Fusion Network
(MBFN) to implement the feature fusion method. It can
be easily used in practical tasks as a unified and univer-
sal feature fusion method.

The rest of this paper is organized as follows. In the second
section, we give a brief overview of related feature fusion and

tensor decomposition methods. The third section presents our
feature fusion methods using tensor Block decomposition and
the corresponding network. In the fourth section, we give the
experiment results on our networks and the analysis of them.
The last section concludes the paper.

2 Related Work
Feature fusion. Feature fusion enables people to use data
from different domains or extract features from one domain
by different and complementary models. From the view of fu-
sion position, feature-level (early fusion) and score-level (late
fusion) methods are two main existing fusion methods. Some
previous work made comparisons between feature-level and
score-level fusion in pattern recognition [Gunes and Piccardi,
2005; Snoek et al., 2005].

In score-level fusion, there are different models built with
different input features. The final output of fusion is obtained
from the outputs of these different models with rules. Some
studies used fixed pre-defined fusion rules without any learn-
able parameters. For example, N. Thammasan et al. [2017]
integrated multi-modal musical features together by weighted
averaging on scores. K. Simonyan and A. Zisserman [2014]
fused features from convolution neural networks for action
recognition in videos by simple averaging. Some other stud-
ies used fusion models learned from data. Weighted averag-
ing is used on scores for feature fusion where the weights are
learned automatically in work [George and Routray, 2016;
Ma et al., 2015].

Feature-level fusion involves feature aggregation and sub-
space learning. In feature aggregation methods, features are
fused by element-wise product or concatenation of vectors
[Chen et al., 2018]. In many subspace learning methods,
features are first concatenated and then be projected into a
new subspace. A. R. Chowdury et al. [2016] used BCNNs
to fuse features from different layers in VGGNet and they
demonstrated good results. The final features in the model
are the same as applying polynomial kernel on the input fea-
tures. The classical tensor-based feature fusion method is an-
other subspace learning method to fuse features. The advan-
tage of this method is that it takes the relationship between
different features into consideration. B. Nojavanasghari et
al. [2016] presented a deep multimodal fusion architecture to
utilize complementary information from different modalities.
Tensor Fusion Network (TFN) , a method using outer product
of tensor is proposed to fuse multimodal features [Zadeh et
al., 2017]. The computational complexity of such model in-
creases exponentially with the increase of features, resulting
in its ineffectiveness in high dimensional tensor representa-
tions.

Feature fusion methods can also be divided into super-
vised and unsupervised fusion methods. The fusion meth-
ods based on simple concatenation, averaging, tensor product
and Canonical Correlational Analysis (CCA) [Shawe-Taylor
and Cristianini, 2004] are all unsupervised methods for the
reason that they do not use any label information. On the
contrary, supervised fusion methods, such as Linear Discrim-
inant Analysis (LDA) [Belhumeur et al., 1997] and Discrim-
inant Correlation Analysis (DCA) [Haghighat et al., 2016],



use label information and there are trainable parameters. Our
feature fusion method is a supervised, feature-level, subspace
learning method as it has trainable parameters and uses tensor
products to fuse features.
Tensor decomposition. Tensor decomposition is an impor-
tant approach in tensor-based feature fusion. It is usually used
to solve the problem of computational complexity because it
can express a tensor with simpler tensors of reduced sizes.
Another advantage of tensor decomposition is that it can ease
overfitting to some extent [Hu et al., 2017]. Tucker decom-
position and CP decomposition are two popular and classical
tensor decomposition methods. G. Hu et al. [2017] applied
Tucker decomposition in the fusion of face recognition fea-
tures (FRF) and facial attribute features (FAF) to Gated Two-
stream Neural Network (GTNN) in order to enhance face
recognition performance. CP decomposition has been used
to fuse unigram features, bigram features and trigram fea-
tures for dependency parsing in [Lei et al., 2014]. Another
work [Liu et al., 2018] is to use low-rank CP decomposition
on fusing features from audio, video and text features, which
makes multimodal fusion efficient without compromising on
performance. Tensor Block decomposition [Kolda and Bader,
2009] is a general method which combines both CP decom-
position and Tucker decomposition. Tucker decomposition
and CP decomposition can be seen as two extreme cases of
Block decomposition. Tensor Train decomposition is a rela-
tively novel tensor decomposition method [Oseledets, 2011].
The power of feature fusion using tensor Train decomposition
is presented in several previous papers [Khrulkov et al., 2018;
Novikov et al., 2017].

3 Methodology
In this section, we present a multiple feature fusion method
based on tensor Block decomposition and we compare it with
other methods. A Multiple feature Block Fusion Network
(MBFN) is further developed to implement the proposed fea-
ture fusion method.

3.1 Tensor-based Feature Fusion Method
Suppose we have n input feature vectors f1, f2, . . . , fn with
dimensions A1, A2, . . . , An and the size of the expected out-
put feature f is C. The basic tensor-based fusion method is
given by

f =W ×1 f1 ×2 f2 ×3 · · · ×n fn. (1)

The notation ×i is the tensor dot product (also known as ten-
sor contraction), where i indicates at which axis the tensor
dot product operates. W ∈ RA1×A2×···×An×C is the fusion
model parameter. Note that its size increases exponentially
with the increase of the number of input features. Thus, we
cannot use the fusion model directly for the sake of computa-
tion efficiency.

3.2 Multiple Feature Block Decomposition Method
Tensor approximation with tensor decomposition can de-
crease the computational complexity by reducing the number
of the parameters in the fusion model. It can also accelerate
the training speed and reduce overfitting [Hu et al., 2017].

Motivated by the Block decomposition for tensors, we use
a sum of low-rank Tucker tensors to approximate the fusion
model parameterW:

W =

R∑
r=1

(Sr ×1 U
r
1 ×2 U

r
2 ×3 · · · ×n Ur

n). (2)

Here Sr ∈ Rar
1×ar

2×···×ar
n×C are low-rank Tucker tensors

and Ur
i ∈ RAi×ar

i . Therefore, the number of parameters
is reduced from O(C
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the number of input features.
By subsituting Eq. (2) into Eq. (1), we have

f =

(
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r
1 ×2 U

r
2 ×3 · · · ×n Ur

n)

)
×1 f1 ×2 f2 ×3 · · · ×n fn.
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Eq. (3) can be simplified as

f =

R∑
r=1

(Sr ×1 U
r
1f1 ×2 U

r
2f2 ×3 · · · ×n Ur

nfn) . (4)

Based on the property of Kronecker product, we can rewrite
Eq. (4) as

f =

R∑
r=1

(
(Sr(C))

T (Ur
1f1 ⊗Ur

2f2 ⊗ · · · ⊗Ur
nfn)

)
. (5)

Here ⊗ is the Kronecker product or outer product. Sr(C) is
the unfolding of Sr on the output mode as a matrix of size∏n

j=1 a
r
j × C. Its transpose (Sr(C))

T is a matrix of size C ×∏n
j=1 a

r
j . The sum of the products of all (Ur

1f1⊗Ur
2f2⊗· · ·⊗

Ur
nfn) ∈ Ra1a2...an×C and (Sr(C))

T ∈ R1×a1a2...an is the
fused feature in our Block decomposition method, a vector of
dimension C. This fused feature covers the information from
all original features.

3.3 Comparison of the Tensor Decomposition
Methods

It is helpful to make a comparison between the feature fusion
methods based on Tucker decomposition, CP decomposition
and Block decomposition. We show the structures of the three
tensor decomposition methods on a third-order tensor in Fig-
ure 2.

Existing methods using Tucker decomposition (e.g., [Hu et
al., 2017]) can only fuse two features at the same time. To
make a comparison with other methods, we generalize it into
a multiple feature method:

f = (Unfn ⊗Un−1fn−1 ⊗ · · · ⊗U1f1)ST(C). (6)

It is equivalent to a more complex model to extract informa-
tion from features.

The fusion with CP decomposition [Liu et al., 2018] can
be modeled as follows:

f =

R∑
r=1

(
n⊗

i=1

w
(r)
i ·

n⊗
i=1

fi

)
. (7)



(a) Tucker decomposition

(b) CP decomposition

(c) Block decomposition

Figure 2: The three tensor decomposition methods on a third-order
tensor

It can be regarded as using R (rank) feature extractors to ex-
tract features separately. The mathematical expression of a
single feature extractor is

n⊗
i=1

w
(r)
i ·

n⊗
i=1

fi. (8)

The final fused feature is synthesized by all the intermediate
results from the extractors, thus the model is general and the
fused feature is more comprehensive. However, the complex
information contained in original features is difficult to be
extracted since each extractor is relatively simple.

The proposed Block decomposition method combines the
above two methods. As shown in Eq. (5), it contains R rel-
atively complex extractors like that in the Tucker decompo-
sition method. It synthesizes multiple intermediate results as
the final fused feature. Unlike the two feature Tucker decom-
position method, our multiple feature fusion method using
Block decomposition can fuse all features at the same time.
Features are transmitted to the decision layer directly, thus the
multiple feature fusion architectures are more effective than
the others.

Note that the fusion methods using Tucker and CP decom-
position are two extremes of Block decomposition. If we
choose R = 1 or a1 = a2 = · · · = an = 1 in the Block
decomposition method, it will degenerate into the Tucker de-
composition or CP decomposition fusion method. This fact
proves that our Block decomposition method is more general,
therefore it can be applied to broader situations.

3.4 Multiple feature Block Fusion Network
(MBFN)

We present the neural network structure to implement the
Block decomposition in practice. We use the same ari for
all rank r, so that we can use a three-order tensor Ui ∈
RR×Ai×ai to represent all Ur

i , and use an (n+ 2)-order ten-
sor S ∈ RR×C×a1×a2×···×an to represent all Sr. Sr is flat-
tened into Sr(C) ∈ R

∏n
j=1 ar

j×C as in Eq. (5), hence what
we actually use is a matrix. Moreover, we use weighted
summation rather than simple summation in the final step.
The implementation of the step is to add a fully-connected
layer at last. Thus the parameters in the neural network are
Ui ∈ RR×Ai×ai(i = 1, . . . , n), S ∈ RR×C×a1×a2×···×an ,
and w ∈ RR. Therefore, the fusion method that we use prac-
tically is

f = w(S × (U1f1 ⊗U2f2 ⊗ · · · ⊗Unfn)). (9)

The structure of the neural network to implement feature
fusion using Block decomposition is shown in Figure 3. We
denote this architecture as a Multiple feature Block Fusion
Network (MBFN). The key layer in MBFN is the Kronecker

Figure 3: Network to implement feature fusion using Block decom-
position

Product layer, which calculates the Kronecker Product K of
input vectors. Given input vectors {U1f1,U2f2, . . . ,Unfn},
the output of a Kronecker Product layer is given by

K = U1f1 ⊗U2f2 ⊗ · · · ⊗Unfn, (10)

where Uifi is a vector of dimension si and K is a vector of
dimension

∏n
j=1 sj . The elements in K are

Ki = (U1f1)i1(U2f2)i2 . . . (Unfn)in , (11)



where the relationship between i and i1, i2, . . . in is

i = i1s2s3 . . . sn + i2s3 . . . sn + · · ·+ in−1sn + in

=

n−1∑
k=1

ik

n∏
j=i+1

sj

+ in.
(12)

The total number of parameters in MBFN is
R (
∑n

i=1(Aiai) + (a1a2 . . . anC)), which grows lin-
early with the increase of the input feature number. In testing
and application, the fusion parameter W can be synthesised
by the trainable parameters with Eq. (2).

4 Experiments
4.1 Effectiveness of Multiple Feature Fusion

Figure 4: Neural network structure on Reuters Newswire Topics
Classification dataset

(a) Tree-fusion structure (b) DAG-fusion structure

Figure 5: Tree-fusion structure and DAG-fusion structure for fusing
three features using two-feature Tucker Network

To verify the effectiveness of our multiple feature fu-
sion method, we carry out unimodal experiments on Reuters
Newswire Topics Classification dataset. It is a text dataset
with 11,228 newswires labeled over 46 topics. The task is to
choose the corresponding topic for certain newswire, which
is a multi-class classification problem. We use three methods
to extract features from the original text. Fasttext [Grave et
al., 2017] is a simple but efficient method for text classifica-
tion. CNN and LSTM are two classic methods to solve NLP
problems. Here we maintain different models with different

focuses. The CNN model concentrates on the local features
of the text, while LSTM has a better understanding of global
information. The structure of the whole network structure is
shown in Figure 4. We use accuracy as the evaluation metric.
We set the rank of MBFN to one to accelerate training and
highlight the influence of multiple feature architecture. Also,
the sizes of a1, a2 in Eq. (9) corresponding to Fasttext and
CNN models are relatively high in MBFN due to the better
performance of these two single models.

Method Accuracy (%)

Single Models
LSTM 68.9
Fasttext 79.8

CNN 80.3

Two-feature Tree-fusion
TLSTM 79.4
TFasttext 77.2
TCNN 80.0

Two-feature DAG-fusion
DLSTM 77.0
DFasttext 80.4
DCNN 78.0

Other Methods
Concatenation 80.4

Average 80.5
MBFN 81.2

Table 1: Experiment Results on Reuters

We compare our MBFN with the two-feature fusion net-
works. A hierarchical fusion structure is applied to fuse three
features with the two-feature fusion method. Two differ-
ent fusion structures are shown in Figure 5. For the fusion
method corresponding to the Tree structure shown in Figure 5
(a), we fuse two features firstly and then fuse the fused feature
with the remaining feature. Hence, we have three different or-
ders to fuse features by this fusion structure. In this section,
we use Tf3 to represent the Tree-fusion model where feature
f3 is fused in the end. For the fusion method corresponding
to the Directed Acyclic Graph (DAG) structure shown in Fig-
ure 5 (b), a feature is firstly fused with the other two features
respectively, then the two fused features are fused as the fi-
nal fused feature. There are also three different fusion orders
corresponding to the three original features with this struc-
ture. In this section, we use Df2 to represent the DAG-fusion
model where feature f2 is fused twice.

The experiment results are given in Table 1. The hierarchi-
cal two-feature fusion networks can only achieve the accu-
racy of 80.4% at most, and some of them are even worse than
the single models. The performance of two simple feature
fusion methods are slightly more than the two-feature fusion
methods. Our multiple feature method MBFN can reach ac-
curacy of 81.2%. This result proves that our generalization
from two-feature method to multiple feature method is effec-
tive and necessary.

4.2 Comparison with State-of-the-art Methods
To compare our approach with state-of-the-art methods, we
carry out experiments on two multimodal datasets: Mul-



timodal Opinion Sentiment Intensity (CMU-MOSI) dataset
[Zadeh et al., 2016] and Interactive Emotional Dyadic Mo-
tion Capture (IEMOCAP) [Busso et al., 2008]. The data
from both the datasets contains texts, videos and audios, thus
we use the same networks to extract the three kinds of fea-
tures. The whole network structure is shown in Figure 6. The
models to extract the audio and video features are both three-
layered fully-connected neural networks, and the model to
extract the text feature is LSTM.

Figure 6: Neural network structure on multimodal datasets

CMU-MOSI CMU-MOSI is a dataset for multimodal sen-
timent intensity and subjectivity analysis. It contains 93 opin-
ion videos from YouTube movie reviewers. Each video con-
sists of segments, which are annotated with sentiments from
-3 to 3. In our experiments, we regard the task as a binary
classification problem. Our target is to judge whether the
sentiment is positive or negative. The best hyperparameter
settings are shown as follows. The sizes a1, a2 and a3 in Eq.
(9), which correspond to audio, video and text respectively in
the MOSI dataset are 16, 8, and 64.

Method Accuracy (%) F1

Single Models
Audio Model 57.9 55.9
Video Model 57.0 57.1
Text Model 64.3 64.0

Feature Fusion
Models

Concatenation 72.7 72.7
Average 72.5 72.5

ExM [2017] 74.1 73.7
LMF [2018] 73.6 73.7

MBFN 74.2 74.3

Table 2: Experiment Results on MOSI

We compare our MBFN with two traditional feature fusion
methods: Concatenation and Average, and two tensor-based

feature fusion methods: ExM using tensor Train decompo-
sition [Novikov et al., 2017], LMF using low-rank CP de-
composition [Liu et al., 2018]. The experiment results are
given in Table 2. The performance of the simple binary clas-
sifiers is poor because they only use the feature from one do-
main. The performance of tensor-based methods exceeds that
of the traditional methods obviously. Our MBFN outperforms
the other tensor-based feature fusion methods and works very
well on this large and complex multi-modal dataset.
IEMOCAP IEMOCAP dataset is an emotion classification
dataset of 302 videos. Our chosen task is to distinguish
whether the speaker is happy. The sizes a1, a2 and a3 in
Eq. (9), which correspond to audio, video and text respec-
tively in the MOSI dataset are 8, 8, and 64. Since the labels
are unbalanced, we use F1-scores as the evaluation metric.
We compare our MBFN with the three single models, two
traditional feature fusion methods and LMF and other three
methods: Deep Fusion [Nojavanasghari et al., 2016], Tensor
Fusion Network [Zadeh et al., 2017] and LMF [Liu et al.,
2018].

The performance of different models is shown in Table 3.
Due to the limitation of the dataset, tensor-based feature fu-
sion methods do not show overwhelming advantage than tra-
ditional methods. However, LMF and our MBFN still out-
perform all the other methods, and our MBFN reaches the
state-of-the-art performance on this dataset.

Method F1

Single Models
Audio Model 79.1
Video Model 83.3
Text Model 79.6

Feature Fusion
Models

Concatenation 85.5
Average 84.3

DF [2016] 81.0
TFN [2017] 83.6
LMF [2018] 85.8

MBFN 85.8

Table 3: Experiment Results on IEMOCAP

5 Conclusion
In this paper, we present a generalized tensor-based feature
fusion method. Firstly, we propose a novel multiple feature
fusion method using tensor Block decomposition, which is
equivalent to constructing many powerful feature extractors
in order to obtain better feature fusion results. It can fuse mul-
tiple features at the same time and is more effective than two
feature fusion methods. Then, we build a Multiple feature
Block Fusion Network (MBFN) to implement the proposed
feature fusion method. Extensive experiments on unimodal
and multimodal datasets show the effectiveness of the multi-
ple feature fusion method and the better performance of the
proposed framework than existing methods.
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