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Abstract

Bayesian neural networks have been widely used in
many applications because of the distinctive probabilistic
representation framework. Even though Bayesian neural
networks have been found more robust to adversarial at-
tacks compared with vanilla neural networks, their ability
to deal with adversarial noises in practice is still limited.
In this paper, we propose Spectral Expectation Bound Reg-
ularization (SEBR) to enhance the robustness of Bayesian
neural networks. Our theoretical analysis reveals that
training with SEBR improves the robustness to adversar-
ial noises. We also prove that training with SEBR can re-
duce the epistemic uncertainty of the model and hence it can
make the model more confident with the predictions, which
verifies the robustness of the model from another point of
view. Experiments on multiple Bayesian neural network
structures and different adversarial attacks validate the cor-
rectness of the theoretical findings and the effectiveness of
the proposed approach.

1. Introduction
Bayesian neural networks [8, 29] provide a probabilis-

tic view of deep learning frameworks by treating the model
weights as random variables. One of the profound advan-
tages of a Bayesian neural network is that it can provide
both the aleatoric uncertainty and the epistemic uncertainty
estimations because of the probabilistic representation of
the model. In contrast, a vanilla deep neural network only
models the aleatoric uncertainty by a certain probability dis-
tribution. Thus, Bayesian neural networks are successfully
applied in many tasks to model uncertainties and build a
more reliable and robust system, including but not limited
to computer vision tasks [17, 20, 30] and natural language
processing tasks [39].
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Neural network models without particular settings [2,
14] are sensitive and vulnerable to adversarial attacks in
testing. Defenses against adversarial attacks are difficult.
The Lipschitz constant serves as an evaluation metric of
the adversarial robustness of a model by providing a worst-
case bound [18, 37]. Many previous methods enhance
the model robustness by constricting the Lipschitz constant
[10, 23, 31]. These methods have made a significant im-
provement in both theoretical analysis and practical appli-
cations. However, they cannot be used in Bayesian neural
networks directly because of the probabilistic representa-
tions of model parameters.

Bayesian neural networks, on the other hand, are use-
ful for defending adversarial noises compared with vanilla
neural networks. Because of the probabilistic representa-
tions of model parameters and predictions, Bayesian neu-
ral networks can be applied to detect adversarial samples
from normal samples [5, 24, 34]. Moreover, Bayesian neu-
ral networks have been found to have adversarial robustness
naturally. Y. Gal et al. [13] and Carbone et al. [9] reveal
that any gradient-based adversarial attacks are invalid on
Bayesian neural networks under some extremely idealized
conditions, e.g., idealized architecture [13], sufficient data
and sampling times [9]. Nonetheless, these studies all have
certain limitations. In many practical scenarios, predictions
on adversarial samples are still necessary even though they
have been detected. Additionally, the idealized conditions
are almost impossible in practice. Therefore, there is still
a vast space for further improvement of the robustness of
Bayesian neural networks.

This paper presents a method, Spectral Expectation
Bound Regularization (SEBR), to enhance the robustness
of Bayesian neural networks. The model trained with SEBR
has a smaller expectation of the spectral norm of the training
parameter matrices. As a result, the improvement on the ad-
versarial robustness of Bayesian neural networks is guaran-
teed based on theoretical derivation in this paper. Moreover,
the impact of SEBR on the epistemic uncertainty of the out-
put of Bayesian models is also studied theoretically and it
further verifies the robustness of the proposed method. Ex-



periments are carried out to validate both the correctness of
the theoretical findings and the improvement on the robust-
ness of the models in a variety of actual scenarios.

In summary, the main contributions are listed as follows:

• This paper proposes Spectral Expectation Bound Reg-
ularization (SEBR), which applies the Lipschitz con-
straint in Bayesian neural networks efficiently. Ac-
cording to the theoretical analysis, it can improve the
robustness of the Bayesian neural network models.

• It is proved that SEBR training reduces the uncertainty
of the model effectively in theoretical analysis, which
provides another explanation of the model robustness.

• Experiments on multiple Bayesian neural network
structures verify the theory and the effectiveness of the
proposed method. The codes are available in https:
//github.com/AISIGSJTU/SEBR.

2. Related Work
Robustness on Bayesian Neural Networks. Bayesian
neural networks, where the model weights are treated as
random variables, provide a probabilistic view of deep
learning models [29]. Many previous methods investigated
the robustness of Bayesian neural networks. It has been
shown that Bayesian neural networks are effective in de-
tecting adversarial samples [5, 24, 34], and it is observed
that models tend to make wrong predictions on adversarial
samples where the model outputs have high uncertainties
[24]. X. Liu et al. applied adversarial training in Bayesian
neural networks and gained an obvious robustness improve-
ment [25]. From another point of view, Y. Gal et al. [13]
revealed that idealized Bayesian neural networks can even
avoid adversarial attacks. As the sufficient conditions in
[13] are difficult to achieve in practice, Carbone et al. [9]
further demonstrated that Bayesian neural networks are ro-
bust to gradient-based adversarial attacks in the large-data,
over-parameterized limit. However, as the idealized condi-
tions are almost impossible, Bayesian neural networks do
not perform perfectly on defending against adversarial at-
tacks in real tasks.

Lipschitz Constraint in Neural Networks. Methods
about Lipschitz continuity are widely used to enhance
the robustness and other targets in deep learning models.
Yoshida and Miyato [40] proposed the spectral norm regu-
larization to maintain the Lipschitz continuity by penalizing
the sum of spectral norms of the parameter weight matrices.
Further, Gouk et al. generalized the spectral norm regular-
ization to non-l2 norms and convolution layers [15]. On the
other hand, Miyato et al. [28] proposed spectral normaliza-
tion, where the spectral norms are normalized so that the
Lipschitz constraint Lip(f) = 1 is satisfied. It is added

into the discriminator in a generative adversarial network
and the quality of generated samples gets improved. Jens
Behrmann et al. [4] proved that the ResNet is invertible if
its Lipschitz constant is restricted to Lip(f) < 1 on the
residual blocks. Many other papers [3, 6, 12, 19, 32] apply
the Lipschitz constraint and spectral norm in deep learning
to enhance the generalizability and robustness. However,
these existing methods are not suitable for Bayesian neu-
ral networks because of the probabilistic representations of
parameters. Our method is the first to apply the Lipschitz
constraint in Bayesian neural networks.

3. Background
3.1. Variational Inference in Bayesian Neural Net-

works

Suppose we have observationsD = {(x1,y1), (x2,y2),
. . . }. A Bayesian neural network parameterized by W uses
a variational distribution Q(W) to approximate the true
posterior probability P (W|D). For simplicity, we con-
sider Bayesian neural networks with Gaussian priors, and
parameters are represented as Gaussian distributions. The
Bayesian neural network minimizes the Kullback–Leibler
(KL) divergence

KL(Q(W)||P (W|D))) = −
∫
Q(W) log

P (W|D)

Q(W)
dW

= logP (D)−
∫
Q(W) log

P (W,D)

Q(W)
dW.

(1)

Since logP (D) is a constant for given observationsD, min-
imizing the KL divergence is equivalent to minimizing

L = −
∫
Q(W) log

P (W,D)

Q(W)
dW

= −EW logP (D|W) +KL(P (W)||Q(W))).

(2)

Note that −L is a lower bound of logP (X), thus L is usu-
ally called the Evidence Lower Bound (ELBO) loss [7]. In
practical Bayesian neural networks, the first term is usually
estimated for each sample (x,y) in the observations by the
following Monte Carlo sampling

−EW logP (D|W) ≈ − 1

K

K∑
k=1

log p(y|x,Wk),Wk ∼ Q(W),

(3)

where log p(y|x,Wk) can be calculated by the cross-
entropy loss in classification tasks. The second term
KL(P (W)||Q(W))) is directly computed analytically
with a presumed prior distribution.
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3.2. Lipschitz Continuity for Neural Networks

Lipschitz continuity is a significant property of a func-
tion in mathematical analysis. A function f : X → Y , is
said to be Lipschitz continuous if there exists a real constant
α ≥ 0 such that, for ∀x1,x2 ∈ X , we have

dY (f (x1) , f (x2)) ≤ α · dX (x1,x2) , (4)

where dX and dY denote the distance metrics on set X and
Y , respectively. The smallest α that satisfies this condition
is referred to as the Lipschitz Constant of function f . In
the context of a deep neural network, the function f is a
composite function composed by multiple functions:

f(x) = (φL ◦ φL−1 · · · ◦ φ1) (x), (5)

where each φl is the mapping function of each layer l =
1, · · · , L. For the convenience of expression, we let Lip(·)
represent the Lipschitz constant of a function. According to
the composition property of Lipschitz continuity, we have

Lip(f) ≤
L∏

l=1

Lip(φl). (6)

Hence, to constraint the Lipschitz constant of the whole
function f , it is sufficient to bound the Lipschitz constants
for the mapping functions φl of each layer l = 1, · · · , L.

3.3. Uncertainty Estimation

Uncertainty estimation is one of the significant func-
tions of Bayesian neural networks, which is also essential
in the evaluation of the robustness of a deep learning model
[16, 24, 27]. For a classification model with parameters W,
input x and output y in classes C = {c1, c2, . . . , cm}, fol-
lowing previous work [1, 11], we model the uncertainty in
the prediction by its predictive entropy

H(y|x,W) =
m∑
i=1

p(y = ci|x,W) log p(y = ci|x,W).

(7)

It contains both aleatoric uncertainty Ha and epistemic un-
certainty He. The aleatoric uncertainty Ha is given by

Ha(y|x,W) = EWH(y|x,W) ≈ 1

K

K∑
k=1

H(y|x,Wk),

(8)

which implies that it can be estimated by K Monte Carlo
samplings. The epistemic component He is given by the
difference between the total uncertainty H and the aleatoric
uncertainty Ha, i.e.,

He(y|x,W) = H(y|x,W)− EWH(y|x,W). (9)

In a regression task, the output becomes a vector y in-
stead of a class, which means the predictive entropy cannot
be used to measure the uncertainty. Instead, the uncertainty
can be measured by the following variance of the Gaussian
mixture distribution over outputs [1]:

H(y|x,W) = σ2(y|x,W) =
1

K

K∑
k=1

σ2(y|x,Wk)︸ ︷︷ ︸
aleatoric uncertainty

+
1

K

K∑
k=1

µ(y|x,Wk)2 −

(
1

K

K∑
k=1

µ(y|x,Wk)

)2

︸ ︷︷ ︸
epistemic uncertainty

.

(10)

The aleatoric uncertainty Ha is usually used to model the
uncertainty caused by the noise in data, while the epistemic
uncertainty He corresponds to the uncertainty in model pa-
rameters and model structures [1].

4. Spectral Expectation Bound Regularization
Here we consider anL-layer feed-forward Bayesian neu-

ral network to explain our method. A layer with the map-
ping function fW(x) = f(Wx + b) accepts x ∈ Rm as
the input. Here f(·) represents an activation function, e.g.
relu and sigmoid, and W represents all trainable pa-
rameters of the function, including W and b. The elements
in parameter matrices W and b are all random variables
in the Bayesian framework. Therefore, when we forward
the function multiple times, the output vector y is sampled
from a probabilistic distribution determined by input x and
parameters W.

In the following section, we will consider how to make
the function robust to a given perturbation. The following
theorem presents that the expectation of disturbance of the
output in a layer is bounded by the expectation of the spec-
tral norm of parameter matrix E‖W‖2, the length of the
perturbation vector ‖ξ‖, and the Lipschitz constant of the
activation function Lip(f).

Theorem 1. Consider function fW(x) = f(Wx + b),
where the activation function f(·) is Lipschitz continuous
with Lipschitz constantLip(f). For any perturbation ξ with
norm ‖ξ‖, we have

EW ‖fW(x + ξ)− fW(x)‖ ≤ Lip(f) · E‖W‖2 · ‖ξ‖,
(11)

where ‖W‖2 represents the spectral norm of matrixW , and
it is defined as

‖W‖2 = max
ξ∈Rn,ξ 6=0

‖Wξ‖
‖ξ‖

. (12)



The proof of this theorem is given in the Supplementary
Material. Note that the Lipschitz constant of the activation
function f(·) is fixed for a given Bayesian neural network
structure. Besides, the Lipschitz constant of many popu-
larly used activation function, e.g., relu and sigmoid,
is bounded by 1. Therefore, the expectation of the spectral
norm of the weight matrix can influence the sensitivity of
a Bayesian neural network model. The model will become
more robust if E‖W‖2 of each layer get restricted.

Similar to the spectral norm regularization in vanilla neu-
ral networks [40], a simple method to restrict E‖W‖2 in a
Bayesian neural network model is to add it to the loss as a
regularization term, i.e.,

minimize
W

L+
λ

2

L∑
l=1

(E‖W l‖2)2, (13)

where the expectation is estimated by Monte Carlo sam-
pling and the spectral norm is calculated by the Power Iter-
ation method. However, this method has a very high com-
putational complexity. We denote the times of Monte Carlo
sampling as K and the iterations of Power Iteration as N .
Then, the time complexity of such calculation is O(KN).
To accelerate the training process, we propose a method to
fast estimate the upper bound of E‖W‖2 analytically, in-
stead of directly estimating the expectation forW by Monte
Carlo sampling and Power Iteration.

Theorem 2 gives an upper bound of the expectation of
the spectral norm of a Gaussian random matrix.

Theorem 2. Consider a Gaussian random matrix W ∈
Rm×n, where Wij ∼ N(Mij , A

2
ij) with M,A ∈ Rm×n.

Suppose G ∈ Rm×n is a zero-mean Gaussian random ma-
trix with the same variance, i.e., Gij ∼ N(0, A2

ij). We have

E‖W‖2

≤‖M‖2 + c

(
max

i
‖Ai,:‖+ max

j
‖A:,j‖+ Emax

i,j
|Gij |

)
,

(14)

where c is a constant independent of W .

The proof for this theorem is shown in the Supplemen-
tary Material. With Theorem 2, we do not need to directly
optimize E‖W‖2. We can optimize the upper bound of
E‖W‖2. Specifically, the Power Iteration method is uti-
lized to estimate the spectral norm of ‖M‖2. Monte Carlo
sampling is adopted to estimate the last term Emaxi,j |Gij |.
The remaining term, maxi ‖Ai,:‖+ maxj ‖A:,j‖ can be di-
rectly calculated on given A. Therefore, the time complex-
ity is reduced from O(KN) to O(K + N) successfully.
The constant c can be simply ignored because it is indepen-
dent of the input and our target is to minimize the whole
algebraic expression. Therefore, we can add the upper

Algorithm 1: Variational Inference with Spectral
Expectation Bound Regularization

1 Compute the ELBO loss L with Equation (2).
2 LS = 0
3 for l = 1 to L do
4 Define M l, Al following Theorem 2.
5 Ll = 0

// First: ‖M‖2
6 sample u ∼ N(0,1)
7 for Sufficient iterations N do
8 v = (M l)Tu/‖(M l)Tu‖
9 u = M lv/‖M lv‖

10 end
11 Ll = Ll + uTM lv

// Second: maxi ‖Al
i,:‖+ maxj ‖Al

:,j‖
12 Ll = Ll + maxi ‖Al

i,:‖+ maxj ‖Al
:,j‖

// Third:
∑K

k=1 maxi,j

∣∣ε ·Al
ij

∣∣2
13 sum = 0
14 for Sufficient MC simulation times K do
15 sample εk ∼ N(0, 1)

16 sum = sum+ maxi,j

∣∣εk ·Al
ij

∣∣
17 end
18 Ll = Ll + sum/t

19 LS = LS + 1
2L

2
l

20 end
21 L = L+ λ · LS
22 Update with the gradient on minimizing L.

bound as a regularisation term into the loss function. Con-
sequently, we consider the following empirical risk mini-
mization problem:

minimize
W

L+ λ · LS . (15)

Here L is the ELBO loss as defined in Equation (2). The
notation LS represents the SEBR loss:

LS =
1

2

L∑
l=1

(‖M l‖2 + max
i
‖Al

i,:‖+ max
j
‖Al

:,j‖+

K∑
k=1

max
i,j

∣∣εk ·Al
ij

∣∣)2, εk ∼ N(0, 1).

(16)

The parameter λ is a regularization factor, which controls
the trade-off between the robustness and the expressive
power of the model. We refer to this method as Spectral
Expectation Bound Regularization (SEBR). The algorithm
to apply SEBR together with variational inference in prac-
tice is provided in Algorithm 1.



Figure 1. The variation trends of both Monte Carlo estimation and the estimated upper bound of E‖W‖2 in a 3-layer Bayesian neural
network during training. Best viewed in color.

Figure 2. The comparison of the change of the Monte Carlo estimation and the estimated upper bound of E‖W‖2 between the original
model and the model trained with the SEBR method. Best viewed in color.

Method Avg. time per epoch

Reg. on E‖W‖2 1654.8 (s)
SEBR 410.5 (s)

Table 1. Time cost comparison between SEBR and the direct reg-
ularization on E‖W‖2.

5. Influence of SEBR on Uncertainty
In this section, we show that our SEBR method can re-

duce the epistemic uncertainty on the output of a Bayesian
neural network model.

The following theorem shows the epistemic uncertainty
of the output of a one-layer Bayesian neural network de-
creases after one step gradient descent with SEBR.

Theorem 3. Consider a Bayesian neural network with
only a linear layer fW(x) = Wx + b, where x ∈ Rn,
W ∈ Rm×n. Denote the epistemic uncertainty (following
the definition in Equation (10)) of the output after one step
gradient descent without SEBR as He, and the epistemic
uncertainty after one step gradient descent with SEBR as
H ′e. With sufficient sampling times, we have

H ′e ≤ He. (17)

Proof. With sufficient sampling times, the epistemic uncer-

tainty the function fW(x) = Wx + b estimates is the vari-
ance of µ(y|x,W). Since x is a constant vector and all el-
ements of W are independent Gaussian variables, we have

He = σ2(µ(y|x,W)) = σ2(
1

n

n∑
i=1

m∑
j=1

Wijxj)

=
1

n2

n∑
i=1

m∑
j=1

x2jσ
2(Wij)

=
1

n2

n∑
i=1

m∑
j=1

x2jA
2
ij .

(18)

Here A is the standard deviation matrix of W following the
definition in Theorem 2. Compared with normal training,
the one step gradient descent with SEBR additionally opti-
mize the SEBR loss LS . Let A and A′ be the standard de-
viation matrices corresponding to training with SEBR and
without SEBR respectively. For each p = 1, 2, . . . ,m and
q = 1, 2, . . . , n,

A′pq =Apq − α
√

2LS(
∂‖M‖2
∂Apq

+
∂maxi ‖Ai,:‖

∂Apq
+

∂maxj ‖A:,j‖
∂Apq

+
∂
∑K

k=1 maxi,j |εk ·Aij |
∂Apq

),

(19)



Model Dataset Attack Noise `∞ norm Acc. w/o. SEBR (%) Acc. w. SEBR (%) ∆ (%)

Bayesian
MLP MNIST

/ 0 0 97.05± 0.38 96.83± 0.48 −0.22

FGSM
small 0.04 83.83± 0.51 85.74± 0.64 + 1.91

medium 0.16 8.97± 0.28 43.69± 5.92 + 34.72
large 0.3 5.06± 0.21 24.54± 8.65 + 19.48

PGD
small 0.04 81.99± 1.05 83.67± 0.67 + 1.68

medium 0.16 4.20± 0.84 9.54± 2.82 + 5.34
large 0.22 1.55± 0.35 3.18± 1.52 + 1.63

Bayesian
CNN MNIST

/ 0 0 98.88± 0.27 98.70± 0.04 −0.18

FGSM
small 0.04 85.64± 2.52 86.14± 2.76 + 0.50

medium 0.08 55.98± 4.40 60.27± 8.65 + 4.29
large 0.14 18.16± 0.57 22.55± 11.23 + 4.39

PGD
small 0.04 82.91± 2.63 85.10± 2.96 + 2.19

medium 0.08 36.53± 5.85 49.20± 10.75 + 12.67
large 0.14 9.88± 2.02 12.33± 5.31 + 2.45

Bayesian
MLP

Fashion
MNIST

/ 0 0 84.38± 0.37 78.75± 0.83 −5.63

FGSM
small 0.04 60.96± 0.24 62.06± 1.15 + 1.10

medium 0.1 24.29± 1.16 31.65± 1.25 + 7.36
large 0.2 1.99± 0.57 4.59± 0.75 + 2.60

PGD
small 0.04 59.86± 0.34 61.80± 1.13 + 1.94

medium 0.1 19.18± 1.01 29.67± 1.22 + 10.49
large 0.2 0.44± 0.14 2.71± 0.60 + 2.27

Bayesian
CNN

Fashion
MNIST

/ 0 0 87.45± 0.57 84.83± 0.33 −2.62

FGSM
small 0.04 40.82± 1.86 46.03± 4.22 + 5.21

medium 0.08 15.89± 0.97 18.96± 5.00 + 3.07
large 0.1 10.24± 0.31 11.97± 3.95 + 1.73

PGD
small 0.04 32.81± 1.70 39.92± 3.25 + 7.11

medium 0.06 15.03± 2.03 20.87± 4.00 + 5.84
large 0.08 5.62± 0.73 9.27± 1.62 + 3.65

Table 2. Comparison on the Robustness of Models without SEBR and with SEBR. The mean value and maximum deviation of three runs
are reported.

where α > 0 is the learning rate.
It is obvious that the first term ∂‖M‖2

∂Aij
= 0 since the

mean matrix M is unrelated to Aij . The second term
∂ maxi ‖Ai,:‖

∂Apq
> 0 when p = argmaxi ‖Ai,:‖; otherwise,

∂ maxi ‖Ai,:‖
∂Apq

= 0. Similarly, the third term ∂ maxj ‖A:,j‖
∂Apq

is
non-negative. The last term satisfies

∂
∑K

k=1 maxi,j |εk ·Aij |
∂Apq

=

K∑
k=1

∂maxi,j |εk| ·Aij

∂Apq
≥ 0.

(20)

Therefore, we have: ∀p, q, A′pq ≤ Apq . By substituting it
into Equation (18), we can get the result of the theorem.

Theorem 3 states that our SEBR naturally reduces the

epistemic uncertainty on the output of the Bayesian neu-
ral network effectively. On the other hand, it is obvious
that the aleatoric uncertainty can also be reduced because
of the optimization on the spectral norm of the mean matrix
‖M‖2. The reduction on both the epistemic uncertainty and
the aleatoric uncertainty is observed and verified in the fol-
lowing experiments, which enables our model to be robust
and confident on the predictions.

6. Experiments
In this section, we empirically verify our theoretical

findings and investigate the effectiveness of the proposed
SEBR method. We train a variety of Bayesian neural net-
works, including Bayesian MLPs and Bayesian CNNs, on
MNIST dataset [22], Fashion-MNIST dataset [38], CIFAR-
10 dataset, and CIFAR-100 dataset [21]. In Section 6.1,



Model Dataset Attack Noise `∞ norm Acc. w/o. SEBR (%) Acc. w. SEBR (%) ∆ (%)

Bayesian MLP
+ Adv. Training MNIST

/ 0 0 97.22± 0.27 96.94± 0.39 −0.28

FGSM
small 0.04 92.87± 0.27 92.08± 0.12 −0.79

medium 0.16 54.56± 1.71 57.63± 1.08 + 3.07
large 0.3 9.94± 0.13 33.09± 8.23 + 23.15

PGD
small 0.04 92.57± 0.40 91.87± 0.26 −0.70

medium 0.16 40.05± 5.32 40.66± 4.18 + 0.61
large 0.22 11.15± 5.70 16.47± 3.57 + 5.32

Bayesian CNN
+ Adv.Training MNIST

/ 0 0 98.89± 0.19 98.77± 0.08 −0.12

FGSM
small 0.04 96.23± 0.40 95.96± 0.23 −0.27

medium 0.2 62.34± 4.70 63.20± 4.10 + 0.86
large 0.44 11.36± 2.17 14.18± 0.82 + 2.82

PGD
small 0.04 95.98± 0.40 95.79± 0.24 −0.19

medium 0.2 26.17± 4.39 30.06± 3.92 + 3.89
large 0.44 6.85± 1.67 8.78± 1.07 + 1.93

Table 3. Comparison on the Robustness of Adversarial trained Models without SEBR and with SEBR. The mean value and maximum
deviation of three runs are reported.

we experimentally present the variation of the models after
adding the SEBR and validate the theoretical motivation.
In Section 6.2, we discuss the improvement on the robust-
ness of defending adversarial attacks on Bayesian neural
networks with SEBR. In Section 6.3, we analyze the un-
certainty variation caused by SEBR and verify Theorem 3
experimentally .

6.1. Variation of Models after adding SEBR

We present the experiment results to verify that the upper
bound of E‖W‖2 is a suitable estimation and it can reflect
the change trend of the real value of E‖W‖2. The exper-
iments are done on a Bayesian MLP with three layers on
the MNIST dataset [22]. The values of E‖W‖2 and our es-
timated upper bound are recorded for each layer during a
50-epoch training. Figure 1 shows the results. Even though
there is an obvious gap between the upper bound and the
un-biased estimated value by the Monte-Carlo estimation,
the difference between them keeps stable and their varia-
tion trends are synchronous. This validates the rationality
of utilizing the upper bound in our method.

We further investigate how our SEBR method influences
E‖W‖2. The parameter λ is set to be 0.01 in the Bayesian
neural network. The experiment results are shown in Fig-
ure 2. The added constraint on the upper bound from SEBR
not only reduces the upper bound itself but also reduces the
un-biased evaluated value estimated by the Monte Carlo es-
timation, which validates the effectiveness of SEBR.

To verify that SEBR indeed reduces the time cost in prac-
tice, we compare the time cost for SEBR and the direct reg-
ularization method on the expectation of the spectral norms
shown in Equation (13). The simulation times of Monte

Carlo sampling and iteration times of Power Iteration are set
as 10. According to the experimental results shown in Ta-
ble 1, the direct optimization on E‖W‖2 makes the training
very slow because it needs sufficient times for both Monte
Carlo sampling and Power Iteration and the calculation of
the expectation is necessary in every forward propagation.
The training with SEBR significantly reduces the amount of
time cost for training compared with the direct optimization
method. Hence, it enhances the feasibility of the method in
practice.

6.2. Improvements on Adversarial Robustness

The Fast Gradient Sign Method (FGSM) [14] is one of
the most commonly used attack methods. The Projected
Gradient Descent method (PGD) [26] is a more sophisti-
cated and powerful adversarial attack method. To evaluate
the impact of different settings of λ for the SEBR method
shown in Equation (15), we measure the change in robust-
ness with varying λ on defending the FGSM and the PGD
attacks. The results are presented in Figure 3, where the
accuracy is used as the evaluation metric. In the absence
of adversarial noise, our SEBR causes a slight decrease on
performance. It is normal because of the trade-off between
clean accuracy and adversarial accuracy [35, 41]. With the
increase of λ from 0 (i.e., model without SEBR) to 0.02,
the model becomes more robust on defending noises, even
though there is a subtle performance decrease on data with-
out adversarial noise. On the other hand, when we con-
tinue increasing λ, the model performs worse because of
the poorer fitting ability. Therefore, using a suitable λ is
important to achieve fairly competent performance.

Table 2 provides the comparisons of robustness of the



(a) FGSM attack

(b) PGD attack

Figure 3. Change in robustness on defending FGSM and PGD at-
tacks with different λ in SEBR. Best viewed in color.

(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Figure 4. Uncertainties measured by Bayesian neural networks
on data with adversarial noises. Models trained with SEBR have
lower uncertainty on the predictions. Best viewed in color.

models without SEBR and with SEBR, where both the
Bayesian MLP models and the Bayesian CNN models are
tested on the MNIST [22] dataset and the Fashion MNIST
dataset [38]. We continue using the 3-layer neural network
in the MLP model, and we use LeNet as the CNN architec-
ture here. The hyper-parameter settings and the implemen-
tation details are reported in the Supplementary Material.
We present the accuracy of the models on defending adver-
sarial attacks of different norms. Since different adversarial

attacks are not of the same attack power and the robustness
of different baseline models are also different, different ab-
solute noise `∞ norms are adopted for different models to
reflect the robustness of the model in various situations as
fully as possible. The models with SEBR are more robust
on defending all of small, medium, large noises compared
with the original Bayesian neural network models. To verify
that SEBR is also effective on more modern architectures
and larger datasets, we show more experiment results about
SEBR of Bayesian CNN with VGG [33] architecture on CI-
FAR10 and CIFAR100 datasets in the Supplementary Ma-
terial. SEBR keeps effective on the larger diverse datasets
and more complex network architecture.

We also implement the model adversarially trained with
FGSM as a higher baseline. It utilizes the information from
model gradients and input data, and hence it is among the
most effective defense techniques [14, 25, 36]. The results
are shown in Table 3. It makes models robust on defensing
data with small noise. Nonetheless, our SEBR method fur-
ther improves the model robustness obviously on defensing
larger adversarial noise, which further verifies the univer-
sality and effectiveness of SEBR.

6.3. Uncertainty Variation

To further verify the robustness of the models trained
with SEBR, we measure the aleatoric uncertainty and the
epistemic uncertainty on Bayesian neural networks trained
with SEBR and without SEBR. Figure 4 presents the mea-
sured uncertainties on data with small FGSM adversarial
noises (`∞ = 0.1). More experimental results on clean
data and other noises can be found in the Supplemen-
tary Material. All of the experiments show that the mod-
els trained with SEBR has lower uncertainties, including
both the aleatoric uncertainty and the epistemic uncertainty.
Therefore, our SEBR makes the models more confident on
the predictions and improves the robustness.

7. Conclusion

In this paper, we propose the SEBR method that restricts
the expectation of the Lipschitz constant on Bayesian neu-
ral networks. The theoretical analysis demonstrates that
SEBR improves the robustness of defending against ad-
versarial noises. The relationship between SEBR training
and the output uncertainty variation is also discussed. It
is proved that SEBR reduces the uncertainty on the model
outputs. We verify our proposals by experiments on both
the Bayesian MLP model and the Bayesian CNN model in
defending FGSM and PGD attacks. Further experiments
validate that models trained with SEBR have lower uncer-
tainties, which verifies the robustness from another side.
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