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Section 1

Introduction
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Introduction

• Problem: Adding imperceivable noises to the training data to
confuse classifier in testing.

Clean training examples

Adversarial training samples

Acc: High

Acc: Low

Training Testing
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Section 2

The proposed method
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Problem formulation

The learning target of a neural network fθ with parameter θ is

Target

θ∗ = argmin
θ

∑
(x,y)∼D

[L (fθ(x), y)] (1)

Noise generator: gξ

Constraint on noise

∀x, ‖gξ(x)‖∞ ≤ ε (2)

In this work, an encoder-decoder network with activation
ε · (tanh(·)) in the last layer is used.
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Problem formulation

The task is formulated into

Task formulation

max
ξ

∑
(x,y)∼D

[
L
(
fθ∗(ξ)(x), y

)]
s.t. θ∗(ξ) = argmin

θ

∑
(x,y)∼D

[L (fθ (x+ gξ(x)) , y)]
(3)
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Optimization

• The equality constraint can be relaxed into

θi = θi−1 − α · ∇θi−1
L
(
fθi−1

(x+ gξ(x)) , y
)

(4)

• The basic idea is to alternatively update fθ on noisy data via
gradient descent.and gξ on clean data over gradient ascent.

• However, fθ and gξ won’t converge in practice.
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Optimization

• Collecting the update trajectories for fθ
• Update gξ based on such trajectories.

• Implementation trick: save gξ instead of fθi .
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Label specific adversaries

• It can be easily transfer to the label specific conditions.

Label specific adversaries

Replace

max
ξ

∑
(x,y)∼D

[L (fθ∗(ξ)(x), y)] (5)

into

min
ξ

∑
(x,y)∼D

[
L
(
fθ∗(ξ)(x), η(y)

)]
, (6)

where η is a predefined label transformation function.
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Section 3

Experiments
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Performance Evaluation

• The test accuracy obviously dropped when trained on the
adversarial datasets.

• The classifier trained on the adversarial data cannot
differentiate the clean samples.
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Effect of varying parameters

• There is a sudden drop in performance when the perturbation
constraint ε exceeds 0.15.

• The proposed method performs better than random flip.
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Evaluation of Transferability

• It transfers very well on even non-NN classifiers, e.g., random
forest and SVM.
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Generalization Gap

• A clear generalization gap is observed during the training
process.

• It is conjectured that the deep model tends to overfit towards
the adversarial noises.
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Validation and Linear Hypothesis

• The model performs well when taking only adversarial noises
as inputs.

• One possible explanation is the linearity inside deep models.
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Weight Visualizations

• The victim SVM weights went to the opposite direction and
tend to overfits on image corners.
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Label Specific Adversaries

• Price: test accuracy increases from 0.25± 0.04 to 1.48± 0.21.

• Effect: Success rate for targeting the desired specific label:
79.7± 0.38.
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Section 4

Conclusion
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Conclusion

• This paper proposed a general framework for generating
training time adversarial data.

• A simple yet effective training scheme to train both networks.

• Experiments on image data confirm the effectiveness.
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Related consecutive work

• A concurrent work minimizes the gradients of weights to make
models harder to converge in transfer learning 1.

• “Inversely adversarial noise” generated by PGD has a similar effect
and is used to synthesize Unlearnable Examples 2.

• Gradient manipulation is used to generate poisoned dataset 3.

• Adversarial examples make stronger poisons 4.

• Adversarial training serves as a defense with theoretical guarantee 5.
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Section 5

Others
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Experience in AAAI
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Experience in AAAI
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