

Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder

Ji Feng*, Qi-Zhi Cai*, Zhi-Hua Zhou

NeurIPS 2019 Presented by Jiaru Zhang, AISIG March 8, 2022

Introduction	The proposed method	Experiments	Conclusion	Others
00				

▲ Ξ ► < Ξ ►</p>

1 Introduction

2 The proposed method

3 Experiments

Introduction	The proposed method	Experiments	Conclusion	Others
•0				

Section 1 Introduction

< □ > < □ > < □ > < □ > < □ > < □ >

ł

Introduction ○●	The proposed method	Experiments	Conclusion	Others

Introduction

• Problem: Adding imperceivable noises to the training data to confuse classifier in testing.

Introduction	The proposed method	Experiments	Conclusion	Others
	•00000			

Section 2 The proposed method

< ∃ >

∢ ≣ ▶

Introduction	The proposed method	Experiments	Conclusion	Others
	00000			

Problem formulation

The learning target of a neural network f_{θ} with parameter θ is

 $\theta^* = \arg\min_{\theta} \sum_{(x,y)\sim\mathcal{D}} \left[\mathcal{L}\left(f_{\theta}(x), y\right) \right]$ (1)

Noise generator: g_{ξ}

Target

Constraint on noise

$$\forall x, \left\|g_{\xi}(x)\right\|_{\infty} \le \epsilon \tag{2}$$

In this work, an encoder-decoder network with activation shanghal Jao Tong $\epsilon \cdot (\tanh(\cdot))$ in the last layer is used.

Introduction	The proposed method	Experiments	Conclusion	Others
	000000			

Problem formulation

The task is formulated into

Task formulation

$$\max_{\xi} \sum_{(x,y)\sim\mathcal{D}} \left[\mathcal{L}\left(f_{\theta^{*}(\xi)}(x), y\right) \right]$$

s.t. $\theta^{*}(\xi) = \arg\min_{\theta} \sum_{(x,y)\sim\mathcal{D}} \left[\mathcal{L}\left(f_{\theta}\left(x + g_{\xi}(x)\right), y\right) \right]$ (3)

Introduction	The proposed method	Experiments	Conclusion	Others
	000000			

Optimization

The equality constraint can be relaxed into

$$\theta_{i} = \theta_{i-1} - \alpha \cdot \nabla_{\theta_{i-1}} \mathcal{L}\left(f_{\theta_{i-1}}\left(x + g_{\xi}(x)\right), y\right)$$
(4)

Image: A matrix

- The basic idea is to alternatively update f_θ on noisy data via gradient descent.and g_ξ on clean data over gradient ascent.
- However, f_{θ} and g_{ξ} won't converge in practice.

Introduction	The proposed method	Experiments	Conclusion	Others
	000000			

Optimization

- Collecting the update trajectories for f_θ
- Update g_{ξ} based on such trajectories.

Figure 1: An overview for learning to confuse: Decoupling the alternating update for f_{θ} and g_{ξ}

• • • • • • • •

• Implementation trick: save g_{ξ} instead of f_{θ_i} .

Introduction	The proposed method	Experiments	Conclusion	Others
	00000			

Label specific adversaries

• It can be easily transfer to the label specific conditions.

Label specific adversaries

Replace

$$\max_{\xi} \sum_{(x,y)\sim\mathcal{D}} \left[\mathcal{L}\left(f_{\theta^*}(\xi)(x), y \right) \right]$$
(5)

into

$$\min_{\xi} \sum_{(x,y)\sim\mathcal{D}} \left[\mathcal{L}\left(f_{\theta^*(\xi)}(x), \eta(y) \right) \right], \tag{6}$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ...

where η is a predefined label transformation function.

Learning to Confuse: Generating Training Time Adversarial Data with Auto-Encoder

о Тонд 9/27

AISIG

Introduction	The proposed method	Experiments •0000000	Conclusion	Others

Section 3 **Experiments**

< □ > < □ > < □ > < □ > < □ > < □ >

ł

Introduction	The proposed method	Experiments	Conclusion	Others
		0000000		

Performance Evaluation

• The test accuracy obviously dropped when trained on the adversarial datasets.

	MNIST	ImageNet	CIFAR-10
Clean Data	99.32 ± 0.05	88.5 ± 2.32	77.28 ± 0.17
Adversarial Data	0.25 ± 0.04	54.2 ± 11.19	28.77 ± 2.80

• The classifier trained on the adversarial data cannot differentiate the clean samples.

Introduction	The proposed method	Experiments	Conclusion	Others
		0000000		

Effect of varying parameters

- There is a sudden drop in performance when the perturbation constraint ϵ exceeds 0.15.
- The proposed method performs better than random flip.

Figure 4: Effect of varying ϵ .

Figure 5: Varying the ratio of adversaries under different ϵ .

- E

-∢ ≣⇒

Evaluation of Transferability

• It transfers very well on even non-NN classifiers, e.g., random forest and SVM.

Image: A matrix

→ Ξ → < Ξ →</p>

Introduction	The proposed method	Experiments	Conclusion	Others
		00000000		

Generalization Gap

- A clear generalization gap is observed during the training process.
- It is conjectured that the deep model tends to overfit towards the adversarial noises.

Validation and Linear Hypothesis

- The model performs well when taking only adversarial noises as inputs.
- One possible explanation is the linearity inside deep models.

Figure 9: Clean samples and their corresponding adversarial noises for MNIST, CIFAR-10 and ImageNet

Table 2: Prediction accuracy taking **only noises as inputs**. That is, the accuracy between the true label and $f_{\theta}(g_{\xi}(x))$ where x is the clean sample.

	Noisetrain	Noise _{test}
MNIST	95.62	95.15
ImageNet	88.87	93.00
CIFAR-10	78.57	72.98

Weight Visualizations

• The victim SVM weights went to the opposite direction and tend to overfits on image corners.

Figure 10: LinearSVM weights visualization for MNIST. Top row: Weights trained on clean training data. Bottom row: Weights trained on adversarial training data.

Label Specific Adversaries

- Price: test accuracy increases from 0.25 ± 0.04 to 1.48 ± 0.21 .
- Effect: Success rate for targeting the desired specific label: 79.7 ± 0.38 .

Introduction	The proposed method	Experiments	Conclusion	Others
			000	

Section 4 Conclusion

< □ > < □ > < □ > < □ > < □ > < □ >

Ę

Introduction	The proposed method	Experiments	Conclusion	Others
			000	

Conclusion

- This paper proposed a general framework for generating training time adversarial data.
- A simple yet effective training scheme to train both networks.
- Experiments on image data confirm the effectiveness.

Introduction	The proposed method	Experiments	Conclusion	Others
			000	

Related consecutive work

- A concurrent work minimizes the gradients of weights to make models harder to converge in transfer learning ¹.
- "Inversely adversarial noise" generated by PGD has a similar effect and is used to synthesize *Unlearnable Examples*².
- Gradient manipulation is used to generate poisoned dataset ³.
- Adversarial examples make stronger poisons ⁴.
- Adversarial training serves as a defense with theoretical guarantee ⁵.

3 Liam H Fowl, Ping-yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit Amit Bansal, Wojciech Czaja, Tom Goldstein. Protecting Proprietary Data: Poisoning for Secure Dataset Release. In arxiv preprint, 2103.02683.

Juncheng Shen, Xiaolei Zhu, De Ma. TensorClog: An Imperceptible Poisoning Attack on Deep Neural Network Applications, in IEEE Access, vol. 7, pp. 41498-41506, 2019

² Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang. Unlearnable Examples: Making Personal Data Unexploitable. In ICLR, 2021.

⁴ Liam H Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, Tom Goldstein. Adversarial Examples Make Strong Poisons. In NeurIPS, 2021.

 ⁵ Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, Songcan Chen. Better Safe Than Sorry: In NeurlPS, 2021.
 ShangHai JiAo Tong University

 1
 NeurlPS, 2021.
 Image: ShangHai JiAo Tong University

Introduction	The proposed method	Experiments	Conclusion	Others
				0000000

Section 5 Others

Ę

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction	The proposed method	Experiments	Conclusion	Others
				000000

Introduction	The proposed method	Experiments	Conclusion	Others
				0000000

AAAI-2022	Home	Venue	Schedule	Papers	Plenary	Events *
lect	Select Show Favorite					
	Ingroing Everlan Navid Networks Alexandro Gungling Ven Pauly You (San Gung) Ven Pauly You (San Gung)	n. 27 orga			Each d paper. by a m If you I you se You se You ca by auth Drag s summ plot.	at represents a They are arranged easure of similarity. Hower over a dot, the related paper. It is a not solve the related paper in search for papers nor, keyword, or title rectangle to an area of the

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Ð.

Introduction	The proposed method	Experiments	Conclusion	Others
				0000000

Introduction	The proposed method	Experiments	Conclusion	Others
				0000000

Experiments

Conclusion

Experience in AAAI

Experiments

Conclusion

Experience in AAAI

Shanghai Jiao Tong University