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Bayesian Neural Networks

• Bayesian neural network is a particular neural network where parameters

are represented as probabilistic distributions.

• It is widely used because of its uncertainty and interpretability.

Figure source: Javier Antorán. Understanding uncertainty in bayesian neural networks. Masters thesis, University of Cambridge,

2019.
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Uncertainties

• Consider a 3-classification problem, where the model outputs a

probability for each of the classes.

• The vanilla neural network can model the aleatoric uncertainty Ha:

• High Ha: [0.3, 0.3, 0.4]

• Low Ha: [0.01, 0.01, 0.98]

• A Bayesian neural network outputs different results in different runs.

Hence, it can model the epistemic uncertainty He additionally :

• High Ha and high He : [0.3, 0.3, 0.4], [0.2, 0.5, 0.3], [0.6, 0.2, 0.2], ...

• High Ha but low He : [0.3, 0.3, 0.4], [0.3, 0.32, 0.38], [0.27, 0.3, 0.43], ...

• Low Ha but high He : [0.01, 0.01, 0.98], [0.98, 0.01, 0.01], [0.01, 0.98,

0.01], ...

• Low Ha and low He : [0.01, 0.01, 0.98], [0.01, 0.02, 0.97], [0.02, 0.91,

0.97], ...

6



Uncertainties

• Consider a 3-classification problem, where the model outputs a

probability for each of the classes.

• The vanilla neural network can model the aleatoric uncertainty Ha:

• High Ha: [0.3, 0.3, 0.4]

• Low Ha: [0.01, 0.01, 0.98]

• A Bayesian neural network outputs different results in different runs.

Hence, it can model the epistemic uncertainty He additionally :

• High Ha and high He : [0.3, 0.3, 0.4], [0.2, 0.5, 0.3], [0.6, 0.2, 0.2], ...

• High Ha but low He : [0.3, 0.3, 0.4], [0.3, 0.32, 0.38], [0.27, 0.3, 0.43], ...

• Low Ha but high He : [0.01, 0.01, 0.98], [0.98, 0.01, 0.01], [0.01, 0.98,

0.01], ...

• Low Ha and low He : [0.01, 0.01, 0.98], [0.01, 0.02, 0.97], [0.02, 0.91,

0.97], ...

6



Uncertainties

• Consider a 3-classification problem, where the model outputs a

probability for each of the classes.

• The vanilla neural network can model the aleatoric uncertainty Ha:

• High Ha: [0.3, 0.3, 0.4]

• Low Ha: [0.01, 0.01, 0.98]

• A Bayesian neural network outputs different results in different runs.

Hence, it can model the epistemic uncertainty He additionally :

• High Ha and high He : [0.3, 0.3, 0.4], [0.2, 0.5, 0.3], [0.6, 0.2, 0.2], ...

• High Ha but low He : [0.3, 0.3, 0.4], [0.3, 0.32, 0.38], [0.27, 0.3, 0.43], ...

• Low Ha but high He : [0.01, 0.01, 0.98], [0.98, 0.01, 0.01], [0.01, 0.98,

0.01], ...

• Low Ha and low He : [0.01, 0.01, 0.98], [0.01, 0.02, 0.97], [0.02, 0.91,

0.97], ...

6



Uncertainties

• Consider a 3-classification problem, where the model outputs a

probability for each of the classes.

• The vanilla neural network can model the aleatoric uncertainty Ha:

• High Ha: [0.3, 0.3, 0.4]

• Low Ha: [0.01, 0.01, 0.98]

• A Bayesian neural network outputs different results in different runs.

Hence, it can model the epistemic uncertainty He additionally :

• High Ha and high He : [0.3, 0.3, 0.4], [0.2, 0.5, 0.3], [0.6, 0.2, 0.2], ...

• High Ha but low He : [0.3, 0.3, 0.4], [0.3, 0.32, 0.38], [0.27, 0.3, 0.43], ...

• Low Ha but high He : [0.01, 0.01, 0.98], [0.98, 0.01, 0.01], [0.01, 0.98,

0.01], ...

• Low Ha and low He : [0.01, 0.01, 0.98], [0.01, 0.02, 0.97], [0.02, 0.91,

0.97], ...

6



Uncertainties

• Consider a 3-classification problem, where the model outputs a

probability for each of the classes.

• The vanilla neural network can model the aleatoric uncertainty Ha:

• High Ha: [0.3, 0.3, 0.4]

• Low Ha: [0.01, 0.01, 0.98]

• A Bayesian neural network outputs different results in different runs.

Hence, it can model the epistemic uncertainty He additionally :

• High Ha and high He : [0.3, 0.3, 0.4], [0.2, 0.5, 0.3], [0.6, 0.2, 0.2], ...

• High Ha but low He : [0.3, 0.3, 0.4], [0.3, 0.32, 0.38], [0.27, 0.3, 0.43], ...

• Low Ha but high He : [0.01, 0.01, 0.98], [0.98, 0.01, 0.01], [0.01, 0.98,

0.01], ...

• Low Ha and low He : [0.01, 0.01, 0.98], [0.01, 0.02, 0.97], [0.02, 0.91,

0.97], ...

6



Examples of uncertainty modeling in CV

• Modeling both Ha and He gives a notable improvement in segmentation

accuracy:

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer vision? In NeurIPS, 2017.
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Examples of uncertainty modeling in NLP

• Modeling both Ha (DU) and He (MU) also gives a notable improvement

in sentiment analysis tasks:

Yijun Xiao and William Yang Wang. Quantifying uncertainties in natural language processing tasks. In AAAI, 2019.
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Adversarial Robustness

• Neural networks have been found vulnerable to adversarial attacks.

• A small perturbation which is undetectable for human can cause a large

change of the output of a network.

• In this paper we focus on adversarial defense, i.e., how to defend the

adversarial attacks.

Figure source: Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In

ICLR, 2015
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Adversarial Robustness on Bayesian Neural Networks

• Bayesian neural networks are effective in detecting adversarial samples 1

2.

• Adversarial training has been used in Bayesian neural networks to improve

model robustness 3.

• Idealized Bayesian neural networks can even avoid adversarial attacks

under some settings 4 5.

• However, there is still a large space for further improvement.

1
Yingzhen Li and Yarin Gal. Dropout inference in bayesian neural networks with alpha-divergences. In ICML, 2017.

2
Lewis Smith and Yarin Gal. Understanding measures of uncertainty for adversarial example detection. In Amir Globerson and

Ricardo Silva, editors, UAI, 2018.
3

Xuanqing Liu, Yao Li, Chongruo Wu, and Cho-Jui Hsieh. Adv-BNN: Improved adversarial defense through robust bayesian neural

network. In ICLR, 2019.
4

Yarin Gal and Lewis Smith. Sufficient conditions for idealised models to have no adversarial examples: a theoretical and empirical

study with bayesian neural networks. arXiv preprint arXiv:1806.00667, 2018.
5

Ginevra Carbone, Matthew Wicker, Luca Laurenti, Andrea Patane, Luca Bortolussi, and Guido Sanguinetti. Robustness of bayesian

neural networks to gradient-based attacks. In NeurIPS, 2020.
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Lipschitz Continuity

Consider a function f (x) mapping x into y .

We hope it is insensitive to the perturbation of the input. For a perturbation

ξ, we want

‖f (x + ξ)− f (x)‖ (1)

to be small. So we introduce the Lipschitz Continuity here:

For a function f , if ∃Lip(f ), ∀x , ξ, we have

‖f (x + ξ)− f (x)‖ ≤ Lip(f ) · ‖ξ‖, (2)

then f is Lipschitz continuous or satisfies Lipschitz constraint.

Lipschitz Continuity
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Lipschitz Constraint in Neural Networks

• We have seen insensitivity means Lipschitz continuity. Additionally, we

hope Lip(f ) as small as possible for a model fw .

• Consider a single layer in a neural network:

fw (x) = f (Wx + b), (3)

where W and b are parameter matrix and vector, f (·) is the activation

function.

• If ξ is small enough,

‖fw (x + ξ)− fw (x)‖ = ‖f (W (x + ξ) + b)− f (Wx + b)‖ (4)

=

∥∥∥∥∂f

∂x
W ξ

∥∥∥∥ (5)

:≤ Lip(f ) · ‖ξ‖ (6)

• For popular activation functions (e.g. relu, sigmoid, tanh, ...),
∥∥ ∂f
∂x

∥∥ are

all bounded.

12



Lipschitz Constraint in Neural Networks

• So we only need to maintain

‖W ξ‖ ≤ Lip(f ) · ‖ξ‖, (7)

and answer the question: What is the smallest Lip(f) ?

• Now we introduce the definition of Spectral Norm:

For a matrix W , we define its Spectral Norm as

‖W ‖2 = max
ξ 6=0

‖W ξ‖
‖ξ‖ . (8)

Note that it is a generalization of l2 norm for vectors.

Definition (Spectral Norm)

• Now we can write the formula (7) as

‖W ξ‖ ≤ ‖W ‖2 · ‖ξ‖. (9)
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Discussion

• The Lipschitz constraint is popularly used in deep learning to

improvement the robustness and generality of models 6 7 8.

• However, it cannot be used in Bayesian neural networks because of the

parameters in Bayesian neural networks are probabilistic distributions.

In a word, this work answers the following questions:

• How to apply Lipschitz constraint in Bayesian neural networks to

improve the adversarial robustness?

• How does the method influence the uncertainties?

6
Yoshida, Yuichi and Miyato, Takeru. Spectral norm regularization for improving the generalizability of deep learning. arXiv preprint

arXiv:1705.10941, 2017.
7

Gouk, H., Frank, E., Pfahringer, B., and Cree, M. Regularisation of neural networks by enforcing lipschitz continuity. arXiv preprint

arXiv:1804.04368, 2018.
8

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spectral normalization for generative adversarial networks. In ICLR, 2018.
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Spectral Expectation Bound Regularization
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A Theoretical Point of Penetration

• The idea of restriction on ‖W ‖2 can be naturally extended to Bayesian

neural networks.

• It is proved that the model will become more robust if E‖W ‖2 of each

layer get restricted.

Consider function fW(x) = f (W x + b), where the activation function

f (·) is Lipschitz continuous with Lipschitz constant Lip(f ). For any

perturbation ξ with norm ‖ξ‖, we have

EW ‖fW(x + ξ)− fW(x)‖ ≤ Lip(f ) · E‖W ‖2 · ‖ξ‖, (10)

where ‖W ‖2 represents the spectral norm of matrix W , and it is de-

fined as

‖W ‖2 = max
ξ∈Rn ,ξ 6=0

‖W ξ‖
‖ξ‖ . (11)

Theorem
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Naive method to restrict E‖W ‖2

How to restrict E‖W ‖2 in practice? A naive method:

minimize
W

L+
λ

2

L∑
l=1

(E‖W l‖2)
2, (12)

The expectation is estimated by Monte Carlo sampling (K times). The

spectral norm is calculated by Power Iteration (N iterations) method.

The time complexity is O(KN).
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Faster Estimation

A substitution: Estimation of its upper bound.

Consider a Gaussian random matrix W ∈ Rm×n, where Wij ∼ N(Mij ,A2
ij)

with M,A ∈ Rm×n. Suppose G ∈ Rm×n is a zero-mean Gaussian random

matrix with the same variance, i.e., Gij ∼ N(0,A2
ij). We have

E‖W ‖2 ≤ ‖M‖2 + c

(
max
i
‖Ai ,:‖+max

j
‖A:,j‖+ Emax

i ,j
|Gij |

)
, (13)

where c is a constant independent of W .

Theorem

The estimation of the upper bound is faster: O(K + N)

Denote LS as half of the square of the upper bound of E‖W ‖2 in each layer.

Add it into the loss function:

minimize
W

L+ λ · LS . (14)

The method is named as Spectral Expectation Bound Regularization (SEBR).
17



Verifications

• The upper bounds reflect the variation trends of real values accurately.

• The real values get decreased bacause of the usage of SEBR.
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Verifications

• The time costs get reduced compared with the naive method.
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Influence on Uncertainty
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Influence on Uncertainty

The epistemic uncertainty of the model output gets reduced by SEBR:

Consider a Bayesian neural network with only a linear layer fW(x) =

W x + b, where x ∈ Rn, W ∈ Rm×n. Denote the epistemic uncertainty

of the output after one step gradient descent without SEBR as He , and

the epistemic uncertainty after one step gradient descent with SEBR as

H ′e . With sufficient sample times, we have

H ′e ≤ He . (15)

Theorem

It verifies the robustness of the model from another point of view.
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Verification on Uncertainty Decrease

Experiments on the verification of the decrease of the output uncertainty.
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Experiments of Improvement on Adversarial
Robustness
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Improvement on Adversarial Robustness

Experiments on multiple structures (i.e., MLP and CNN), multiple datasets

(MNIST and Fashion-MNIST), and multiple attacks (i.e., FGSM and PGD)

verify the efficiency of the proposed method.
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Improvement on Adversarial Robustness

Experiments on more complex structures (i.e., VGG), more complex datasets

(CIFAR-10/100), and multiple attacks (i.e., FGSM and PGD) further verify

the efficiency of the proposed method.
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Discussion
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Discussion

There are some future directions about this work:

• Apply Lipschitz constraint on other kinds of neural networks.

• Apply the SEBR method in practical applications.

• Explore more methods to enhance the adversarial robustness of Bayesian

neural networks.
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Q&A
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