
Robustness of Bayesian Neural 
Networks to Gradient-Based Attacks  

1

Jiaru Zhang 
8.13.2020

Arxiv preprint: 2002.04359



2

• Adversarial attacks: Small, potentially imperceptible 
perturbations of test inputs can lead to misclassifications of 
NNs.


• Many attack strategies are based on identifying directions 
of high variability in the loss function by evaluating 
gradients.


• This paper shows a remarkable property of BNNs: The 
gradients of the expected loss function of a BNN vanish in a 
suitably defined large data limit.

Background 
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Background
Bayesian Neural Networks and Adversarial Attacks  

• The predictions of BNNs are obtained by


• It can be seen as an ensemble of NNs.


• One of the most popular adversarial attack is Fast Gradient Sign Method (FGSM):
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Adversarial Robustness of BNN
• Key Theorem:
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Adversarial Robustness of BNN
• The Key Theorem:

• Any gradient-based attack will be ineffective against a BNN in the limit. 


• Necessary premise:


• Fully trained BNN, i.e., it has enough expressive power to fit any function


• large data limit, i.e., the training data are enough to represent the data manifold
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Proof
• Lemma 1
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Proof
• Lemma 1


• The key observation for proving Lemma 1 is: 


• Over-parametrised NNs provably achieve zero loss on the whole data manifold, 
hence the function f would be locally constant at .x*
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Proof
• Corollary 1


• It had been already empirically noticed that adversarial perturbations often arise in 
directions which are normal to the data manifold.


• A consequence of Corollary 1 is:
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Proof
• Recall: we want to prove


• We only need to prove the following symmetry:


• The proof of this lemma rests on constructing a function satisfying (4) and (5).
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Experiments
• The magnitude of the expectation of the gradient shrinks as we increase the 

network’s parameters and the number of training inputs.  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Experiments
• The expected loss gradients of BNNs vanish when increasing the number of 

samples.
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Experiments
• The random attack outperforms the gradient-based attacks. 


• The vanishing behaviour of the gradient makes FGSM and PGD attacks 
ineffective. 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Experiments
Robustness Accuracy Analysis 

• 1000 different NNs and BNNs 
are tested in this experiment. 


• Metric: 1 - the average 
difference in the softmax 
prediction. 


• The larger it is, the more 
robust the model is.
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Experiments
Robustness Accuracy Analysis 

• With the increase of model 
size and accuracy, the 
robustness of BNNs increase.


• This trend is fully reversed for 
normal NNs trained with SGD.
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Experiments
Robustness Accuracy Analysis 

• This trend is less obvious on 
BNNs trained with VI.



17

Conclusion 

• This paper shows that BNNs can evade a broad class of adversarial 
attacks.


• It also has some limitations:


• Performing Bayesian inference in large non-linear models is extremely 
challenging. 


• Theoretical results hold in a thermodynamic limit which is never realized 
in practice.


• We have focused on two attack strategies which directly utilize 
gradients. 


