Uncertainty-guided Continual Learning with Bayesian Neural Networks

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, Marcus Rohrbach
ICLR 2020

Presenter: Jiaru Zhang

Introduction

- Continual learning: Sequentially learning tasks without forgetting

- What not to forget? Important parameters.
- How not to forget? Minimize the change in important parameters.

Importance vs. Uncertainty

How do we define importance?

The more uncertain a parameter is, the more learnable it can be.

Uncertainty-guided Continual Learning with Bayesian NNs (UCB)

Each parameter is modeled by mean μ and variance ρ.
Learning rate regularization:

UCB

$$
\begin{align*}
\alpha_{\mu} & \leftarrow \alpha_{\mu} / \Omega_{\mu} \tag{1}\\
\alpha_{\rho} & \leftarrow \alpha_{\rho} / \Omega_{\rho} \tag{2}
\end{align*}
$$

where Ω represents the importance.

$$
\begin{array}{r}
\Omega_{\mu}=1 / \sigma \\
\quad \Omega_{\rho}=1 \tag{4}
\end{array}
$$

are the best settings empirically found. Here σ is the standard deviation.

UCB using weight pruning (UCB-P)

- Use the signal-to-noise ratio (SNR) as the importance for each parameter:

$$
\begin{equation*}
\Omega=\mathrm{SNR}=|\mu| / \sigma \tag{5}
\end{equation*}
$$

- After training on a task, we
- Freeze the important parameters.
- Prune the unimportant parameters.

- Pros: Recovering pre-pruning performance.
- Cons: Saving masks per task; Require task information at test time.

Results: Sequence of 8 datasets

Datasets: FaceScrub, MNIST, CIFAR100, NotMNIST, SVHN, CIFAR10, TrafficSigns, and FashionMNIST .

Average Accuracy:

$$
\begin{equation*}
\mathrm{ACC}=\frac{1}{n} \sum_{i=1}^{n} R_{i, n} \tag{6}
\end{equation*}
$$

Results: Sequence of 8 datasets

Datasets: FaceScrub, MNIST, CIFAR100, NotMNIST, SVHN, CIFAR10, TrafficSigns, and FashionMNIST .

Backward Transfer (BWT):

$$
\begin{equation*}
\mathrm{BWT}=\frac{1}{n} \sum_{i=1}^{n} R_{i, n}-R_{i, i} . \tag{7}
\end{equation*}
$$

Results: Task-free

UCB can be used even if the task information is not given at test time.

Conclusion

- UCB regularizes the learning rate with the uncertainty measured by Bayesian NNs.
- The more uncertain the parameter is, the higher the learning rate should be.
- UCB can be task free.
- State-of-the-art results on image classification benchmarks.

